Source code for ibm_watsonx_ai.foundation_models.prompts.prompt_template

#  -----------------------------------------------------------------------------------------
#  (C) Copyright IBM Corp. 2023-2025.
#  https://opensource.org/licenses/BSD-3-Clause
#  -----------------------------------------------------------------------------------------

from __future__ import annotations

from typing import TYPE_CHECKING, cast, Any, overload, Literal

if TYPE_CHECKING:
    import langchain
    from langchain.prompts import PromptTemplate as LcPromptTemplate
from dataclasses import dataclass

import pandas
import inspect

from .base_prompt_template import BasePromptTemplate
import ibm_watsonx_ai._wrappers.requests as requests
from ibm_watsonx_ai import APIClient, Credentials
from ibm_watsonx_ai.wml_client_error import (
    WMLClientError,
    InvalidValue,
    InvalidMultipleArguments,
    PromptVariablesError,
)
from ibm_watsonx_ai.wml_resource import WMLResource
from ibm_watsonx_ai.foundation_models.utils.enums import (
    ModelTypes,
    PromptTemplateFormats,
)


@dataclass
class PromptTemplateLock:
    """Storage for lock object."""

    locked: bool
    lock_type: str | None = None
    locked_by: str | None = None


[docs] class FreeformPromptTemplate(BasePromptTemplate): """Storage for Freeform prompt template asset parameters. :param prompt_id: ID of the prompt template, defaults to None. :type prompt_id: str, attribute setting not allowed :param created_at: time that the prompt was created (UTC), defaults to None. :type created_at: str, attribute setting not allowed :param lock: locked state of the asset, defaults to None. :type lock: PromptTemplateLock | None, attribute setting not allowed :param is_template: True if the prompt is a template, False otherwise; defaults to None. :type is_template: bool | None, attribute setting not allowed :param name: name of the prompt template, defaults to None. :type name: str, optional :param model_id: ID of the foundation model, defaults to None. :type model_id: ModelTypes | str | None, optional :param model_params: parameters of the model, defaults to None. :type model_params: dict, optional :param template_version: semantic version for tracking in IBM AI Factsheets, defaults to None. :type template_version: str, optional :param task_ids: list of task IDs, defaults to None. :type task_ids: list[str] | None, optional :param description: description of the prompt template asset, defaults to None. :type description: str, optional :param input_text: input text for the prompt, defaults to None. :type input_text: str, optional :param input_variables: input variables can be present in field `input_text` and are identified by braces ('{' and '}'), defaults to None. :type input_variables: (list | dict[str, dict[str, str]]), optional :param validate_template: if True, the prompt template is validated for the presence of input variables, defaults to True. :type validate_template: bool, optional :raises ValidationError: raised when the set of input_variables is not consistent with the input variables present in the template. Raised only when `validate_template` is set to True. **Examples** Example of an invalid Freeform prompt template: .. code-block:: python prompt_template = FreeformPromptTemplate( name="My freeform prompt", model_id="ibm/granite-13b-chat-v2", input_text='What are the most famous monuments in ?', input_variables=['country']) # Traceback (most recent call last): # ... # ValidationError: Invalid prompt template; check for mismatched or missing input variables. Missing input variable: {'country'} Example of a valid Freeform prompt template: .. code-block:: python prompt_template = FreeformPromptTemplate( name="My freeform prompt", model_id="ibm/granite-13b-chat-v2" input_text='What are the most famous monuments in {country}?', input_variables=['country']) """ _input_mode = "freeform" def __init__( self, name: str | None = None, model_id: ModelTypes | str | None = None, model_params: dict | None = None, template_version: str | None = None, task_ids: list[str] | None = None, description: str | None = None, input_text: str | None = None, input_variables: list | dict[str, dict[str, str]] | None = None, validate_template: bool = True, ) -> None: super().__init__( input_mode=self._input_mode, name=name, model_id=model_id, model_params=model_params, template_version=template_version, task_ids=task_ids, description=description, input_text=input_text, input_variables=input_variables, ) # template validation if validate_template: self._validate_prompt( self.input_variables if self.input_variables else [], self.input_text if self.input_text is not None else "", ) def _validation(self) -> None: """Validate the template structure. :raises ValidationError: raised when input_variables do not fit the placeholders in the input body. """ input_variables = ( self.input_variables if self.input_variables is not None else [] ) self._validate_prompt( input_variables, (self.input_text if self.input_text is not None else ""), )
[docs] class PromptTemplate(BasePromptTemplate): """Parameter storage for a structured prompt template. :param prompt_id: ID of the prompt template, defaults to None. :type prompt_id: str, attribute setting not allowed :param created_at: time that the prompt was created (UTC), defaults to None. :type created_at: str, attribute setting not allowed :param lock: locked state of the asset, defaults to None. :type lock: PromptTemplateLock | None, attribute setting not allowed :param is_template: True if the prompt is a template, False otherwise; defaults to None. :type is_template: bool | None, attribute setting not allowed :param name: name of the prompt template, defaults to None. :type name: str, optional :param model_id: ID of the Foundation model, defaults to None. :type model_id: ModelTypes | str | None, optional :param model_params: parameters of the model, defaults to None. :type model_params: dict, optional :param template_version: semantic version for tracking in IBM AI Factsheets, defaults to None. :type template_version: str, optional :param task_ids: List of task IDs, defaults to None. :type task_ids: list[str] | None, optional :param description: description of the prompt template asset, defaults to None. :type description: str, optional :param input_text: input text for the prompt, defaults to None. :type input_text: str, optional :param input_variables: Input variables can be present in fields: `instruction`, `input_prefix`, `output_prefix`, `input_text`, `examples` and are identified by braces ('{' and '}'), defaults to None. :type input_variables: (list | dict[str, dict[str, str]]), optional :param instruction: instruction for the model, defaults to None. :type instruction: str, optional :param input_prefix: prefix string placed before the input text, defaults to None. :type input_prefix: str, optional :param output_prefix: prefix placed before the model response, defaults to None. :type output_prefix: str, optional :param examples: examples that might help the model adjust the response; [[input1, output1], ...], defaults to None. :type examples: list[list[str]]], optional :param validate_template: if True, the prompt template is validated for the presence of input variables, defaults to True. :type validate_template: bool, optional :raises ValidationError: raised when the set of input_variables is not consistent with the input variables present in the template. Raised only when `validate_template` is set to True. **Examples** Example of an invalid prompt template: .. code-block:: python prompt_template = PromptTemplate( name="My structured prompt", model_id="ibm/granite-13b-chat-v2" input_text='What are the most famous monuments in ?', input_variables=['country']) # Traceback (most recent call last): # ... # ValidationError: Invalid prompt template; check for mismatched or missing input variables. Missing input variable: {'country'} Example of a valid prompt template: .. code-block:: python prompt_template = PromptTemplate( name="My structured prompt", model_id="ibm/granite-13b-chat-v2" input_text='What are the most famous monuments in {country}?', input_variables=['country']) """ _input_mode = "structured" def __init__( self, name: str | None = None, model_id: ModelTypes | str | None = None, model_params: dict | None = None, template_version: str | None = None, task_ids: list[str] | None = None, description: str | None = None, input_text: str | None = None, input_variables: list | dict[str, dict[str, str]] | None = None, instruction: str | None = None, input_prefix: str | None = None, output_prefix: str | None = None, examples: list[list[str]] | None = None, validate_template: bool = True, **kwargs: Any, ) -> None: super().__init__( input_mode=self._input_mode, name=name, model_id=model_id, model_params=model_params, template_version=template_version, task_ids=task_ids, description=description, input_text=input_text, input_variables=input_variables, ) self.instruction = instruction self.input_prefix = input_prefix self.output_prefix = output_prefix self.examples = examples.copy() if examples is not None else examples supported_pt_kwargs = ["input_mode", "external_information"] unsupported_pt_keys = [ key for key in kwargs.keys() if key not in supported_pt_kwargs ] if unsupported_pt_keys: raise WMLClientError( f"Unsupported kwargs: {', '.join(unsupported_pt_keys)}. " f"Supported kwargs are: {', '.join(supported_pt_kwargs)}." ) for key, value in kwargs.items(): if key == "input_mode": key = "_" + key setattr(self, key, value) # template validation if validate_template and not (getattr(self, "_input_mode") == "chat_mode"): self._validation() def _validation(self) -> None: """Validate the template structure. :raises ValidationError: raised when input_variables do not fit the placeholders in the input body. """ input_variables = ( self.input_variables if self.input_variables is not None else [] ) template_text = " ".join( filter(None, [self.instruction, self.input_prefix, self.output_prefix]) ) if self.examples: for example in self.examples: template_text += " ".join(example) self._validate_prompt( input_variables, ( template_text + self.input_text if self.input_text is not None else template_text ), )
[docs] class DetachedPromptTemplate(BasePromptTemplate): """Storage for detached prompt template parameters. :param prompt_id: ID of the prompt template, defaults to None. :type prompt_id: str, attribute setting not allowed :param created_at: time that the prompt was created (UTC), defaults to None. :type created_at: str, attribute setting not allowed :param lock: locked state of the asset, defaults to None. :type lock: PromptTemplateLock | None, attribute setting not allowed :param is_template: True if the prompt is a template, False otherwise; defaults to None. :type is_template: bool | None, attribute setting not allowed :param name: name of the prompt template, defaults to None. :type name: str, optional :param model_id: ID of the foundation model, defaults to None. :type model_id: ModelTypes | str | None, optional :param model_params: parameters of the model, defaults to None. :type model_params: dict, optional :param template_version: semantic version for tracking in IBM AI Factsheets, defaults to None. :type template_version: str, optional :param task_ids: list of task IDs, defaults to None. :type task_ids: list[str] | None, optional :param description: description of the prompt template asset, defaults to None. :type description: str, optional :param input_text: input text for the prompt, defaults to None. :type input_text: str, optional :param input_variables: input variables can be present in field: `input_text` and are identified by braces ('{' and '}'), defaults to None. :type input_variables: (list | dict[str, dict[str, str]]), optional :param detached_prompt_id: ID of the external prompt, defaults to None :type detached_prompt_id: str | None, optional :param detached_model_id: ID of the external model, defaults to None :type detached_model_id: str | None, optional :param detached_model_provider: external model provider, defaults to None :type detached_model_provider: str | None, optional :param detached_prompt_url: URL for the external prompt, defaults to None :type detached_prompt_url: str | None, optional :param detached_prompt_additional_information: additional information of the external prompt, defaults to None :type detached_prompt_additional_information: list[dict[str, Any]] | None, optional :param detached_model_name: name of the external model, defaults to None :type detached_model_name: str | None, optional :param detached_model_url: URL for the external model, defaults to None :type detached_model_url: str | None, optional :param validate_template: if True, the prompt template is validated for the presence of input variables, defaults to True. :type validate_template: bool, optional :raises ValidationError: raised when the set of input_variables is not consistent with the input variables present in the template. Raised only when `validate_template` is set to True. **Examples** Example of an invalid detached prompt template: .. code-block:: python prompt_template = DetachedPromptTemplate( name="My detached prompt", model_id="<some model>", input_text='What are the most famous monuments in ?', input_variables=['country'], detached_prompt_id="<prompt id>", detached_model_id="<model id>", detached_model_provider="<provider>", detached_prompt_url="<url>", detached_prompt_additional_information=[[{"key":"value"}]]}, detached_model_name="<model name>", detached_model_url ="<model url>") # Traceback (most recent call last): # ... # ValidationError: Invalid prompt template; check for mismatched or missing input variables. Missing input variable: {'country'} Example of a valid detached prompt template: .. code-block:: python prompt_template = DetachedPromptTemplate( name="My detached prompt", model_id="<some model>", input_text='What are the most famous monuments in {country}?', input_variables=['country'], detached_prompt_id="<prompt id>", detached_model_id="<model id>", detached_model_provider="<provider>", detached_prompt_url="<url>", detached_prompt_additional_information=[[{"key":"value"}]]}, detached_model_name="<model name>", detached_model_url ="<model url>")) """ _input_mode = "detached" def __init__( self, name: str | None = None, model_id: ModelTypes | str | None = None, model_params: dict | None = None, template_version: str | None = None, task_ids: list[str] | None = None, description: str | None = None, input_text: str | None = None, input_variables: list | dict[str, dict[str, str]] | None = None, detached_prompt_id: str | None = None, detached_model_id: str | None = None, detached_model_provider: str | None = None, detached_prompt_url: str | None = None, detached_prompt_additional_information: list[dict[str, Any]] | None = None, detached_model_name: str | None = None, detached_model_url: str | None = None, validate_template: bool = True, ) -> None: super().__init__( input_mode=self._input_mode, name=name, model_id=model_id, model_params=model_params, template_version=template_version, task_ids=task_ids, description=description, input_text=input_text, input_variables=input_variables, ) self.detached_prompt_id = detached_prompt_id self.detached_model_id = detached_model_id self.detached_model_provider = detached_model_provider self.detached_prompt_url = detached_prompt_url self.detached_prompt_additional_information = ( detached_prompt_additional_information ) self.detached_model_name = detached_model_name self.detached_model_url = detached_model_url # template validation if validate_template: self._validation() def _validation(self) -> None: """Validate the template structure. :raises ValidationError: raised when input_variables does not fit the placeholders in the input body. """ input_variables = ( self.input_variables if self.input_variables is not None else [] ) self._validate_prompt( input_variables, (self.input_text if self.input_text is not None else ""), )
[docs] class PromptTemplateManager(WMLResource): """Instantiate the prompt template manager. :param credentials: credentials for the watsonx.ai instance :type credentials: Credentials or dict, optional :param project_id: ID of the project :type project_id: str, optional :param space_id: ID of the space :type space_id: str, optional :param verify: You can pass one of the following as verify: * the path to a CA_BUNDLE file * the path of directory with certificates of trusted CAs * `True` - default path to truststore will be taken * `False` - no verification will be made :type verify: bool or str, optional .. note:: One of these parameters is required: ['project_id ', 'space_id'] **Example:** .. code-block:: python from ibm_watsonx_ai import Credentials from ibm_watsonx_ai.foundation_models.prompts import PromptTemplate, PromptTemplateManager from ibm_watsonx_ai.foundation_models.utils.enums import ModelTypes prompt_mgr = PromptTemplateManager( credentials=Credentials( api_key=IAM_API_KEY, url="https://us-south.ml.cloud.ibm.com" ), project_id="*****" ) prompt_template = PromptTemplate(name="My prompt", model_id=ModelTypes.GRANITE_13B_CHAT_V2, input_prefix="Human:", output_prefix="Assistant:", input_text="What is {object} and how does it work?", input_variables=['object'], examples=[['What is the Stock Market?', 'A stock market is a place where investors buy and sell shares of publicly traded companies.']]) stored_prompt_template = prompt_mgr.store_prompt(prompt_template) print(stored_prompt_template.prompt_id) # id of prompt template asset .. note:: Here's an example of how you can pass variables to your deployed prompt template: .. code-block:: python from ibm_watsonx_ai.metanames import GenTextParamsMetaNames meta_props = { client.deployments.ConfigurationMetaNames.NAME: "SAMPLE DEPLOYMENT PROMPT TEMPLATE", client.deployments.ConfigurationMetaNames.ONLINE: {}, client.deployments.ConfigurationMetaNames.BASE_MODEL_ID: ModelTypes.GRANITE_13B_CHAT_V2 } deployment_details = client.deployments.create(stored_prompt_template.prompt_id, meta_props) client.deployments.generate_text( deployment_id=deployment_details["metadata"]["id"], params={ GenTextParamsMetaNames.PROMPT_VARIABLES: { "object": "brain" } } ) """ def __init__( self, credentials: Credentials | dict | None = None, *, project_id: str | None = None, space_id: str | None = None, verify: str | bool | None = None, api_client: APIClient | None = None, ) -> None: self.project_id = project_id self.space_id = space_id if credentials: self._client = APIClient(credentials, verify=verify) elif api_client is not None: self._client = api_client else: raise InvalidMultipleArguments( params_names_list=["credentials", "api_client"], reason="None of the arguments were provided.", ) if self.space_id is not None and self.project_id is not None: raise InvalidMultipleArguments( params_names_list=["project_id", "space_id"], reason="Both arguments were provided.", ) if self.space_id is not None: self._client.set.default_space(self.space_id) elif self.project_id is not None: self._client.set.default_project(self.project_id) elif api_client is not None: if project_id := self._client.default_project_id: self.project_id = project_id elif space_id := self._client.default_space_id: self.space_id = space_id else: pass elif not api_client: raise InvalidMultipleArguments( params_names_list=["space_id", "project_id"], reason="None of the arguments were provided.", ) if not self._client.CLOUD_PLATFORM_SPACES and self._client.CPD_version < 4.8: raise WMLClientError(error_msg="Operation is unsupported for this release.") WMLResource.__init__(self, __name__, self._client) @property def _params(self) -> dict[str, str]: """Request params""" if self.space_id is not None and self.project_id is not None: raise InvalidMultipleArguments( params_names_list=["project_id", "space_id"], reason="Both arguments were set.", ) elif self.project_id is not None: return {"project_id": self.project_id} elif self.space_id is not None: return {"space_id": self.space_id} else: raise InvalidMultipleArguments( params_names_list=["space_id", "project_id"], reason="None of the parameters were set.", ) def _create_request_body(self, prompt_template: BasePromptTemplate) -> dict: """Create a request body from a PromptTemplate object. :param prompt_template: PromptTemplate object based on which the request body will be created. :type prompt_template: BasePromptTemplate :return: Request body :rtype: dict """ json_data: dict = {"prompt": dict()} if prompt_template.description is not None: json_data.update({"description": prompt_template.description}) if prompt_template.input_variables is not None: PromptTemplateManager._validate_type( prompt_template.input_variables, "input_variables", [dict, list], False ) if isinstance(prompt_template.input_variables, list): json_data.update( { "prompt_variables": { key: {} for key in prompt_template.input_variables } } ) else: json_data.update({"prompt_variables": prompt_template.input_variables}) if prompt_template.task_ids is not None: PromptTemplateManager._validate_type( prompt_template.task_ids, "task_ids", list, False ) json_data.update({"task_ids": prompt_template.task_ids}) if prompt_template.template_version is not None: json_data.update( {"model_version": {"number": prompt_template.template_version}} ) if hasattr(prompt_template, "_input_mode"): json_data.update({"input_mode": prompt_template._input_mode}) if prompt_template.input_text: PromptTemplateManager._validate_type( prompt_template.input_text, "input_text", str, False ) json_data["prompt"].update({"input": [[prompt_template.input_text, ""]]}) PromptTemplateManager._validate_type( prompt_template.model_id, "model_id", str, True ) if prompt_template.model_id is not None: json_data["prompt"].update({"model_id": prompt_template.model_id}) if prompt_template.model_params is not None: PromptTemplateManager._validate_type( prompt_template.model_params, "model_parameters", dict, False ) json_data["prompt"].update( {"model_parameters": prompt_template.model_params} ) if hasattr(prompt_template, "external_information"): json_data["prompt"].update( {"external_information": prompt_template.external_information} ) data: dict = dict() if isinstance(prompt_template, PromptTemplate): if prompt_template.instruction is not None: data.update({"instruction": prompt_template.instruction}) if prompt_template.input_prefix is not None: data.update({"input_prefix": prompt_template.input_prefix}) if prompt_template.output_prefix is not None: data.update({"output_prefix": prompt_template.output_prefix}) if prompt_template.examples is not None: PromptTemplateManager._validate_type( prompt_template.examples, "examples", list, False ) data.update({"examples": prompt_template.examples}) elif isinstance(prompt_template, DetachedPromptTemplate): external_information: dict = dict() PromptTemplateManager._validate_type( prompt_template.detached_prompt_id, "detached_prompt_id", str, True ) PromptTemplateManager._validate_type( prompt_template.detached_model_id, "detached_model_id", str, True ) PromptTemplateManager._validate_type( prompt_template.detached_model_provider, "detached_model_provider", str, True, ) external_information.update( { "external_prompt_id": prompt_template.detached_prompt_id, "external_model_id": prompt_template.detached_model_id, "external_model_provider": prompt_template.detached_model_provider, } ) if prompt_template.detached_prompt_additional_information is not None: PromptTemplateManager._validate_type( prompt_template.detached_prompt_url, "detached_prompt_url", str, True, ) external_information.update( { "external_prompt": { "url": prompt_template.detached_prompt_url, "additional_information": prompt_template.detached_prompt_additional_information, } } ) if ( prompt_template.detached_model_name is not None or prompt_template.detached_model_url is not None ): PromptTemplateManager._validate_type( prompt_template.detached_model_url, "detached_model_url", str, True, ) PromptTemplateManager._validate_type( prompt_template.detached_model_name, "detached_model_name", str, True, ) external_information.update( { "external_model": { "url": prompt_template.detached_model_url, "name": prompt_template.detached_model_name, } } ) json_data["prompt"].update({"external_information": external_information}) json_data["prompt"].update({"data": data}) return json_data def _from_json_to_prompt( self, response: dict ) -> FreeformPromptTemplate | PromptTemplate | DetachedPromptTemplate: """Convert json response to FreeformPromptTemplate or PromptTemplate object. :param response: Response body after request operation. :type response: dict :return: PromptTemplate object with given details. :rtype: FreeformPromptTemplate | PromptTemplate """ prompt_field: dict = response.get("prompt", dict()) data_field: dict = prompt_field.get("data", dict()) prompt_template: ( FreeformPromptTemplate | PromptTemplate | DetachedPromptTemplate ) match response.get("input_mode"): case "freeform": prompt_template = FreeformPromptTemplate( name=response.get("name"), description=response.get("description"), model_id=prompt_field.get("model_id"), model_params=prompt_field.get("model_parameters"), task_ids=response.get("task_ids"), template_version=response.get("model_version", dict()).get( "number" ), input_variables=response.get("prompt_variables"), input_text=prompt_field.get("input", [[None, None]])[0][0], validate_template=False, ) case "detached": external_information_field: dict = prompt_field.get( "external_information", {} ) prompt_template = DetachedPromptTemplate( name=response.get("name"), description=response.get("description"), model_id=prompt_field.get("model_id"), model_params=prompt_field.get("model_parameters"), task_ids=response.get("task_ids"), template_version=response.get("model_version", dict()).get( "number" ), input_variables=response.get("prompt_variables"), input_text=prompt_field.get("input", [[None, None]])[0][0], detached_prompt_id=external_information_field.get( "external_prompt_id" ), detached_model_id=external_information_field.get( "external_model_id" ), detached_model_provider=external_information_field.get( "external_model_provider" ), detached_prompt_url=external_information_field.get( "external_prompt", {} ).get("url"), detached_prompt_additional_information=external_information_field.get( "external_prompt", {} ).get( "additional_information" ), detached_model_name=external_information_field.get( "external_model", {} ).get("name"), detached_model_url=external_information_field.get( "external_model", {} ).get("url"), validate_template=False, ) case _: prompt_template = PromptTemplate( name=response.get("name"), description=response.get("description"), model_id=prompt_field.get("model_id"), model_params=prompt_field.get("model_parameters"), task_ids=response.get("task_ids"), template_version=response.get("model_version", dict()).get( "number" ), input_variables=response.get("prompt_variables"), input_text=prompt_field.get("input", [[None, None]])[0][0], instruction=data_field.get("instruction"), input_prefix=data_field.get("input_prefix"), output_prefix=data_field.get("output_prefix"), examples=data_field.get("examples"), validate_template=False, ) prompt_template._prompt_id = response.get("id") prompt_template._created_at = response.get("created_at") prompt_template._lock = PromptTemplateLock( **response.get("lock", {"locked": None, "locked_by": None}) ) prompt_template._is_template = response.get("is_template") return prompt_template def _get_details(self, limit: int | None = None) -> list: """Get details of all prompt templates. If limit is set to None, then all prompt templates are fetched. :param limit: limit number of fetched records, defaults to None. :type limit: int | None :return: List of prompts metadata :rtype: List """ headers = self._client._get_headers() url = self._client.service_instance._href_definitions.get_prompts_all_href() json_data: dict[str, int | str] = { "query": "asset.asset_type:wx_prompt", "sort": "-asset.created_at<string>", } if limit is not None: if limit < 1: raise WMLClientError("Limit cannot be lower than 1.") elif limit > 200: raise WMLClientError("Limit cannot be larger than 200.") json_data.update({"limit": limit}) else: json_data.update({"limit": 200}) prompts_list = [] bookmark = True while bookmark is not None: response = requests.post( url=url, json=json_data, headers=headers, params=self._params ) details_json = self._handle_response(200, "Get next details", response) bookmark = details_json.get("next", {"href": None}).get("bookmark", None) prompts_list.extend(details_json.get("results", [])) if limit is not None: break json_data.update({"bookmark": bookmark}) return prompts_list def _change_lock(self, prompt_id: str, locked: bool, force: bool = False) -> dict: """Change the state of a prompt template lock. :param prompt_id: ID of the prompt template :type prompt_id: str :param locked: new state of the lock :type locked: bool :param force: force lock state overwrite, defaults to False. :type force: bool, optional :return: changed state of the lock :rtype: dict """ headers = self._client._get_headers() params = self._params | {"prompt_id": prompt_id, "force": force} json_data = {"locked": locked} url = ( self._client.service_instance._href_definitions.get_prompts_href( ga_api=self._client._use_pta_ga_api ) + f"/{prompt_id}/lock" ) response = requests.put(url=url, json=json_data, headers=headers, params=params) return self._handle_response(200, "change_lock", response) @overload def load_prompt( self, prompt_id: str, astype: Literal[PromptTemplateFormats.STRING, "string"], *, prompt_variables: dict[str, str] | None = None, ) -> str: ... @overload def load_prompt( self, prompt_id: str, astype: Literal[PromptTemplateFormats.LANGCHAIN, "langchain"], *, prompt_variables: dict[str, str] | None = None, ) -> LcPromptTemplate: ... @overload def load_prompt( self, prompt_id: str, astype: Literal[ PromptTemplateFormats.PROMPTTEMPLATE, "prompt" ] = PromptTemplateFormats.PROMPTTEMPLATE, *, prompt_variables: dict[str, str] | None = None, ) -> FreeformPromptTemplate | PromptTemplate | DetachedPromptTemplate: ...
[docs] def load_prompt( self, prompt_id: str, astype: PromptTemplateFormats | str = PromptTemplateFormats.PROMPTTEMPLATE, *, prompt_variables: dict[str, str] | None = None, ) -> ( FreeformPromptTemplate | PromptTemplate | DetachedPromptTemplate | str | LcPromptTemplate ): """Retrieve a prompt template asset. :param prompt_id: ID of the processed prompt template :type prompt_id: str :param astype: type of return object :type astype: PromptTemplateFormats :param prompt_variables: dictionary of input variables and values that will replace the input variables :type prompt_variables: dict[str, str] :return: prompt template asset :rtype: FreeformPromptTemplate | PromptTemplate | DetachedPromptTemplate | str | langchain.prompts.PromptTemplate **Example:** .. code-block:: python loaded_prompt_template = prompt_mgr.load_prompt(prompt_id) loaded_prompt_template_lc = prompt_mgr.load_prompt(prompt_id, PromptTemplateFormats.LANGCHAIN) loaded_prompt_template_string = prompt_mgr.load_prompt(prompt_id, PromptTemplateFormats.STRING) """ headers = self._client._get_headers() params = self._params | {"prompt_id": prompt_id} url = ( self._client.service_instance._href_definitions.get_prompts_href( ga_api=self._client._use_pta_ga_api ) + f"/{prompt_id}" ) if isinstance(astype, PromptTemplateFormats): astype = astype.value if astype == "prompt": response = requests.get(url=url, headers=headers, params=params) return self._from_json_to_prompt( self._handle_response(200, "_load_json_prompt", response) ) elif astype in ("langchain", "string"): response = requests.post(url=url + "/input", headers=headers, params=params) response_input = self._handle_response(200, "load_prompt", response).get( "input" ) response_input = cast(str, response_input) if astype == "string": try: return ( response_input if prompt_variables is None else response_input.format(**prompt_variables) ) except KeyError as key: raise PromptVariablesError(str(key)) else: from langchain.prompts import PromptTemplate as LcPromptTemplate return LcPromptTemplate.from_template(response_input) else: raise InvalidValue("astype")
[docs] def list(self, *, limit: int | None = None) -> pandas.DataFrame: """List all available prompt templates in the DataFrame format. :param limit: limit number of fetched records, defaults to None. :type limit: int, optional :return: DataFrame of fundamental properties of available prompts. :rtype: pandas.core.frame.DataFrame **Example:** .. code-block:: python prompt_mgr.list(limit=5) # list of 5 recent created prompt template assets .. hint:: Additionally you can sort available prompt templates by "LAST MODIFIED" field. .. code-block:: python df_prompts = prompt_mgr.list() df_prompts.sort_values("LAST MODIFIED", ascending=False) """ details = [ "metadata.asset_id", "metadata.name", "metadata.created_at", "metadata.usage.last_updated_at", ] prompts_details = self._get_details(limit=limit) data_normalize = pandas.json_normalize(prompts_details) prompts_data = data_normalize.reindex(columns=details) df_details = pandas.DataFrame(prompts_data, columns=details) df_details.rename( columns={ "metadata.asset_id": "ID", "metadata.name": "NAME", "metadata.created_at": "CREATED", "metadata.usage.last_updated_at": "LAST MODIFIED", }, inplace=True, ) return df_details
[docs] def store_prompt( self, prompt_template: ( FreeformPromptTemplate | PromptTemplate | DetachedPromptTemplate | langchain.prompts.PromptTemplate ), ) -> FreeformPromptTemplate | PromptTemplate | DetachedPromptTemplate: """Store a new prompt template. :param prompt_template: PromptTemplate to be stored. :type prompt_template: (FreeformPromptTemplate | PromptTemplate | DetachedPromptTemplate | langchain.prompts.PromptTemplate) :return: PromptTemplate object that is initialized with values provided in the server response object. :rtype: FreeformPromptTemplate | PromptTemplate | DetachedPromptTemplate """ if isinstance( prompt_template, (PromptTemplate | FreeformPromptTemplate | DetachedPromptTemplate), ): pass else: from langchain.prompts import PromptTemplate as LcPromptTemplate if isinstance(prompt_template, LcPromptTemplate): def get_metadata_value( prompt_temp: LcPromptTemplate, key: str, default: ModelTypes | list | bool | str | None = None, must_be_list: bool = False, must_be_nested_list: bool = False, ) -> Any: if ( hasattr(prompt_temp, "metadata") and prompt_temp.metadata and key in prompt_temp.metadata ): if must_be_list: if isinstance(prompt_temp.metadata[key], str): return [prompt_temp.metadata[key]] return prompt_temp.metadata[key] elif must_be_nested_list: if isinstance(prompt_temp.metadata[key], str): return [[prompt_temp.metadata[key]]] elif isinstance(prompt_temp.metadata[key], list): if isinstance(prompt_temp.metadata[key][0], str): return [prompt_temp.metadata[key]] return prompt_temp.metadata[key] else: return prompt_temp.metadata[key] else: return default match get_metadata_value(prompt_template, "input_mode", "structured"): case "structured": prompt_template = PromptTemplate( name=get_metadata_value( prompt_template, "name", "My prompt" ), model_id=get_metadata_value( prompt_template, "model_id", ModelTypes.FLAN_UL2 ), model_params=get_metadata_value( prompt_template, "model_params", None ), template_version=get_metadata_value( prompt_template, "template_version", None ), task_ids=get_metadata_value( prompt_template, "task_ids", None, must_be_list=True ), description=get_metadata_value( prompt_template, "description", None ), input_text=get_metadata_value( prompt_template, "input_text", prompt_template.template ), input_variables=get_metadata_value( prompt_template, "input_variables", prompt_template.input_variables, ), instruction=get_metadata_value( prompt_template, "instruction", None ), input_prefix=get_metadata_value( prompt_template, "input_prefix", None ), output_prefix=get_metadata_value( prompt_template, "output_prefix", None ), examples=get_metadata_value( prompt_template, "examples", None, must_be_nested_list=True, ), validate_template=get_metadata_value( prompt_template, "validate_template", True ), ) case "freeform": prompt_template = FreeformPromptTemplate( name=get_metadata_value( prompt_template, "name", "My prompt" ), model_id=get_metadata_value( prompt_template, "model_id", ModelTypes.FLAN_UL2 ), model_params=get_metadata_value( prompt_template, "model_params", None ), template_version=get_metadata_value( prompt_template, "template_version", None ), task_ids=get_metadata_value( prompt_template, "task_ids", None, must_be_list=True ), description=get_metadata_value( prompt_template, "description", None ), input_text=get_metadata_value( prompt_template, "input_text", prompt_template.template ), input_variables=get_metadata_value( prompt_template, "input_variables", prompt_template.input_variables, ), validate_template=get_metadata_value( prompt_template, "validate_template", True ), ) case "detached": prompt_template = DetachedPromptTemplate( name=get_metadata_value( prompt_template, "name", "My prompt" ), model_id=get_metadata_value( prompt_template, "model_id", ModelTypes.FLAN_UL2 ), model_params=get_metadata_value( prompt_template, "model_params", None ), template_version=get_metadata_value( prompt_template, "template_version", None ), task_ids=get_metadata_value( prompt_template, "task_ids", None, must_be_list=True ), description=get_metadata_value( prompt_template, "description", None ), input_text=get_metadata_value( prompt_template, "input_text", prompt_template.template ), input_variables=get_metadata_value( prompt_template, "input_variables", prompt_template.input_variables, ), **{ param: get_metadata_value( prompt_template, param, prop.default ) for param, prop in inspect.signature( DetachedPromptTemplate.__init__ ).parameters.items() if param.startswith("detached") }, validate_template=get_metadata_value( prompt_template, "validate_template", True, ), ) case _: raise WMLClientError(error_msg="Unsupported `input_mode`") else: raise WMLClientError(error_msg="Unsupported type for `prompt_template`") headers = self._client._get_headers() PromptTemplateManager._validate_type( prompt_template.name, "prompt_template.name", str, True ) json_data: dict = { "name": prompt_template.name, "lock": {"locked": True}, "input_mode": prompt_template._input_mode, "prompt": dict(), } json_data.update(self._create_request_body(prompt_template)) url = self._client.service_instance._href_definitions.get_prompts_href( ga_api=self._client._use_pta_ga_api ) response = requests.post( url=url, json=json_data, headers=headers, params=self._params ) response = self._handle_response(201, "store_prompt", response) return self._from_json_to_prompt(response)
[docs] def delete_prompt(self, prompt_id: str, *, force: bool = False) -> str: """Remove a prompt template from a project or space. :param prompt_id: ID of the prompt template to be deleted :type prompt_id: str :param force: if True, then the prompt template is unlocked and then deleted, defaults to False. :type force: bool :return: status 'SUCCESS' if the prompt template is successfully deleted :rtype: str **Example:** .. code-block:: python prompt_mgr.delete_prompt(prompt_id) # delete if asset is unlocked """ if force: self.unlock(prompt_id) headers = self._client._get_headers() params = self._params | {"prompt_id": prompt_id} url = ( self._client.service_instance._href_definitions.get_prompts_href( ga_api=self._client._use_pta_ga_api ) + f"/{prompt_id}" ) response = requests.delete(url=url, headers=headers, params=params) return self._handle_response(204, "delete_prompt", response) # type: ignore[return-value]
[docs] def update_prompt( self, prompt_id: str, prompt_template: ( FreeformPromptTemplate | PromptTemplate | DetachedPromptTemplate ), ) -> dict: """Update prompt template data. :param prompt_id: ID of the prompt template to be updated :type prompt_id: str :param prompt: prompt template with new data :type prompt: FreeformPromptTemplate | PromptTemplate | DetachedPromptTemplate :return: metadata of the updated deployment :rtype: dict **Example:** .. code-block:: python updataed_prompt_template = PromptTemplate(name="New name") prompt_mgr.update_prompt(prompt_id, prompt_template) # {'name': 'New name'} in metadata """ headers = self._client._get_headers() params = self._params | {"prompt_id": prompt_id} new_body: dict = dict() current_prompt_template = self.load_prompt(prompt_id) if not isinstance(prompt_template, type(current_prompt_template)): raise TypeError( ( "Type of `prompt_template` is not consistent with" " the input mode of the updated Prompt Template Asset: " f"input_mode={current_prompt_template._input_mode}" ) ) for attribute in prompt_template.__dict__: if getattr( prompt_template, attribute ) is not None and not attribute.startswith("_"): setattr( current_prompt_template, attribute, getattr(prompt_template, attribute), ) if current_prompt_template.name is not None: new_body.update({"name": current_prompt_template.name}) new_body.update(self._create_request_body(current_prompt_template)) url = ( self._client.service_instance._href_definitions.get_prompts_href( ga_api=self._client._use_pta_ga_api ) + f"/{prompt_id}" ) response = requests.patch( url=url, json=new_body, headers=headers, params=params ) return self._handle_response(200, "update_prompt", response)
[docs] def get_lock(self, prompt_id: str) -> dict: """Get the current locked state of a prompt template. :param prompt_id: ID of the prompt template :type prompt_id: str :return: information about the locked state of a prompt template asset :rtype: dict **Example:** .. code-block:: python print(prompt_mgr.get_lock(prompt_id)) """ headers = self._client._get_headers() params = self._params | {"prompt_id": prompt_id} url = ( self._client.service_instance._href_definitions.get_prompts_href( ga_api=self._client._use_pta_ga_api ) + f"/{prompt_id}/lock" ) response = requests.get(url=url, headers=headers, params=params) return self._handle_response(200, "get_lock", response)
[docs] def lock(self, prompt_id: str, force: bool = False) -> dict: """Lock a prompt template if it is unlocked and you have permission to lock it. :param prompt_id: ID of the prompt template :type prompt_id: str :param force: if True, lock is forcefully overwritten :type force: bool :return: locked prompt template :rtype: dict **Example:** .. code-block:: python prompt_mgr.lock(prompt_id) """ return self._change_lock(prompt_id=prompt_id, locked=True, force=force)
[docs] def unlock(self, prompt_id: str) -> dict: """Unlock a prompt template if it is locked and you have permission to unlock it. :param prompt_id: ID of the prompt template :type prompt_id: str :return: unlocked prompt template :rtype: dict **Example:** .. code-block:: python prompt_mgr.unlock(prompt_id) """ # server returns status code 400 after trying to unlock unlocked prompt lock_state = self.get_lock(prompt_id) if lock_state["locked"]: return self._change_lock(prompt_id=prompt_id, locked=False, force=False) else: return lock_state