# -----------------------------------------------------------------------------------------
# (C) Copyright IBM Corp. 2023-2025.
# https://opensource.org/licenses/BSD-3-Clause
# -----------------------------------------------------------------------------------------
from __future__ import annotations
from typing import TYPE_CHECKING, cast, Any, overload, Literal
if TYPE_CHECKING:
import langchain
from langchain.prompts import PromptTemplate as LcPromptTemplate
from dataclasses import dataclass
import pandas
import inspect
from .base_prompt_template import BasePromptTemplate
import ibm_watsonx_ai._wrappers.requests as requests
from ibm_watsonx_ai import APIClient, Credentials
from ibm_watsonx_ai.wml_client_error import (
WMLClientError,
InvalidValue,
InvalidMultipleArguments,
PromptVariablesError,
)
from ibm_watsonx_ai.wml_resource import WMLResource
from ibm_watsonx_ai.foundation_models.utils.enums import (
ModelTypes,
PromptTemplateFormats,
)
@dataclass
class PromptTemplateLock:
"""Storage for lock object."""
locked: bool
lock_type: str | None = None
locked_by: str | None = None
[docs]
class PromptTemplate(BasePromptTemplate):
"""Parameter storage for a structured prompt template.
:param prompt_id: ID of the prompt template, defaults to None.
:type prompt_id: str, attribute setting not allowed
:param created_at: time that the prompt was created (UTC), defaults to None.
:type created_at: str, attribute setting not allowed
:param lock: locked state of the asset, defaults to None.
:type lock: PromptTemplateLock | None, attribute setting not allowed
:param is_template: True if the prompt is a template, False otherwise; defaults to None.
:type is_template: bool | None, attribute setting not allowed
:param name: name of the prompt template, defaults to None.
:type name: str, optional
:param model_id: ID of the Foundation model, defaults to None.
:type model_id: ModelTypes | str | None, optional
:param model_params: parameters of the model, defaults to None.
:type model_params: dict, optional
:param template_version: semantic version for tracking in IBM AI Factsheets, defaults to None.
:type template_version: str, optional
:param task_ids: List of task IDs, defaults to None.
:type task_ids: list[str] | None, optional
:param description: description of the prompt template asset, defaults to None.
:type description: str, optional
:param input_text: input text for the prompt, defaults to None.
:type input_text: str, optional
:param input_variables: Input variables can be present in fields: `instruction`,
`input_prefix`, `output_prefix`, `input_text`, `examples`
and are identified by braces ('{' and '}'), defaults to None.
:type input_variables: (list | dict[str, dict[str, str]]), optional
:param instruction: instruction for the model, defaults to None.
:type instruction: str, optional
:param input_prefix: prefix string placed before the input text, defaults to None.
:type input_prefix: str, optional
:param output_prefix: prefix placed before the model response, defaults to None.
:type output_prefix: str, optional
:param examples: examples that might help the model adjust the response; [[input1, output1], ...], defaults to None.
:type examples: list[list[str]]], optional
:param validate_template: if True, the prompt template is validated for the presence of input variables, defaults to True.
:type validate_template: bool, optional
:raises ValidationError: raised when the set of input_variables is not consistent with the input variables present in the template.
Raised only when `validate_template` is set to True.
**Examples**
Example of an invalid prompt template:
.. code-block:: python
prompt_template = PromptTemplate(
name="My structured prompt",
model_id="ibm/granite-13b-chat-v2"
input_text='What are the most famous monuments in ?',
input_variables=['country'])
# Traceback (most recent call last):
# ...
# ValidationError: Invalid prompt template; check for mismatched or missing input variables. Missing input variable: {'country'}
Example of a valid prompt template:
.. code-block:: python
prompt_template = PromptTemplate(
name="My structured prompt",
model_id="ibm/granite-13b-chat-v2"
input_text='What are the most famous monuments in {country}?',
input_variables=['country'])
"""
_input_mode = "structured"
def __init__(
self,
name: str | None = None,
model_id: ModelTypes | str | None = None,
model_params: dict | None = None,
template_version: str | None = None,
task_ids: list[str] | None = None,
description: str | None = None,
input_text: str | None = None,
input_variables: list | dict[str, dict[str, str]] | None = None,
instruction: str | None = None,
input_prefix: str | None = None,
output_prefix: str | None = None,
examples: list[list[str]] | None = None,
validate_template: bool = True,
**kwargs: Any,
) -> None:
super().__init__(
input_mode=self._input_mode,
name=name,
model_id=model_id,
model_params=model_params,
template_version=template_version,
task_ids=task_ids,
description=description,
input_text=input_text,
input_variables=input_variables,
)
self.instruction = instruction
self.input_prefix = input_prefix
self.output_prefix = output_prefix
self.examples = examples.copy() if examples is not None else examples
supported_pt_kwargs = ["input_mode", "external_information"]
unsupported_pt_keys = [
key for key in kwargs.keys() if key not in supported_pt_kwargs
]
if unsupported_pt_keys:
raise WMLClientError(
f"Unsupported kwargs: {', '.join(unsupported_pt_keys)}. "
f"Supported kwargs are: {', '.join(supported_pt_kwargs)}."
)
for key, value in kwargs.items():
if key == "input_mode":
key = "_" + key
setattr(self, key, value)
# template validation
if validate_template and not (getattr(self, "_input_mode") == "chat_mode"):
self._validation()
def _validation(self) -> None:
"""Validate the template structure.
:raises ValidationError: raised when input_variables do not fit the placeholders in the input body.
"""
input_variables = (
self.input_variables if self.input_variables is not None else []
)
template_text = " ".join(
filter(None, [self.instruction, self.input_prefix, self.output_prefix])
)
if self.examples:
for example in self.examples:
template_text += " ".join(example)
self._validate_prompt(
input_variables,
(
template_text + self.input_text
if self.input_text is not None
else template_text
),
)
[docs]
class DetachedPromptTemplate(BasePromptTemplate):
"""Storage for detached prompt template parameters.
:param prompt_id: ID of the prompt template, defaults to None.
:type prompt_id: str, attribute setting not allowed
:param created_at: time that the prompt was created (UTC), defaults to None.
:type created_at: str, attribute setting not allowed
:param lock: locked state of the asset, defaults to None.
:type lock: PromptTemplateLock | None, attribute setting not allowed
:param is_template: True if the prompt is a template, False otherwise; defaults to None.
:type is_template: bool | None, attribute setting not allowed
:param name: name of the prompt template, defaults to None.
:type name: str, optional
:param model_id: ID of the foundation model, defaults to None.
:type model_id: ModelTypes | str | None, optional
:param model_params: parameters of the model, defaults to None.
:type model_params: dict, optional
:param template_version: semantic version for tracking in IBM AI Factsheets, defaults to None.
:type template_version: str, optional
:param task_ids: list of task IDs, defaults to None.
:type task_ids: list[str] | None, optional
:param description: description of the prompt template asset, defaults to None.
:type description: str, optional
:param input_text: input text for the prompt, defaults to None.
:type input_text: str, optional
:param input_variables: input variables can be present in field: `input_text`
and are identified by braces ('{' and '}'), defaults to None.
:type input_variables: (list | dict[str, dict[str, str]]), optional
:param detached_prompt_id: ID of the external prompt, defaults to None
:type detached_prompt_id: str | None, optional
:param detached_model_id: ID of the external model, defaults to None
:type detached_model_id: str | None, optional
:param detached_model_provider: external model provider, defaults to None
:type detached_model_provider: str | None, optional
:param detached_prompt_url: URL for the external prompt, defaults to None
:type detached_prompt_url: str | None, optional
:param detached_prompt_additional_information: additional information of the external prompt, defaults to None
:type detached_prompt_additional_information: list[dict[str, Any]] | None, optional
:param detached_model_name: name of the external model, defaults to None
:type detached_model_name: str | None, optional
:param detached_model_url: URL for the external model, defaults to None
:type detached_model_url: str | None, optional
:param validate_template: if True, the prompt template is validated for the presence of input variables, defaults to True.
:type validate_template: bool, optional
:raises ValidationError: raised when the set of input_variables is not consistent with the input variables present in the template.
Raised only when `validate_template` is set to True.
**Examples**
Example of an invalid detached prompt template:
.. code-block:: python
prompt_template = DetachedPromptTemplate(
name="My detached prompt",
model_id="<some model>",
input_text='What are the most famous monuments in ?',
input_variables=['country'],
detached_prompt_id="<prompt id>",
detached_model_id="<model id>",
detached_model_provider="<provider>",
detached_prompt_url="<url>",
detached_prompt_additional_information=[[{"key":"value"}]]},
detached_model_name="<model name>",
detached_model_url ="<model url>")
# Traceback (most recent call last):
# ...
# ValidationError: Invalid prompt template; check for mismatched or missing input variables. Missing input variable: {'country'}
Example of a valid detached prompt template:
.. code-block:: python
prompt_template = DetachedPromptTemplate(
name="My detached prompt",
model_id="<some model>",
input_text='What are the most famous monuments in {country}?',
input_variables=['country'],
detached_prompt_id="<prompt id>",
detached_model_id="<model id>",
detached_model_provider="<provider>",
detached_prompt_url="<url>",
detached_prompt_additional_information=[[{"key":"value"}]]},
detached_model_name="<model name>",
detached_model_url ="<model url>"))
"""
_input_mode = "detached"
def __init__(
self,
name: str | None = None,
model_id: ModelTypes | str | None = None,
model_params: dict | None = None,
template_version: str | None = None,
task_ids: list[str] | None = None,
description: str | None = None,
input_text: str | None = None,
input_variables: list | dict[str, dict[str, str]] | None = None,
detached_prompt_id: str | None = None,
detached_model_id: str | None = None,
detached_model_provider: str | None = None,
detached_prompt_url: str | None = None,
detached_prompt_additional_information: list[dict[str, Any]] | None = None,
detached_model_name: str | None = None,
detached_model_url: str | None = None,
validate_template: bool = True,
) -> None:
super().__init__(
input_mode=self._input_mode,
name=name,
model_id=model_id,
model_params=model_params,
template_version=template_version,
task_ids=task_ids,
description=description,
input_text=input_text,
input_variables=input_variables,
)
self.detached_prompt_id = detached_prompt_id
self.detached_model_id = detached_model_id
self.detached_model_provider = detached_model_provider
self.detached_prompt_url = detached_prompt_url
self.detached_prompt_additional_information = (
detached_prompt_additional_information
)
self.detached_model_name = detached_model_name
self.detached_model_url = detached_model_url
# template validation
if validate_template:
self._validation()
def _validation(self) -> None:
"""Validate the template structure.
:raises ValidationError: raised when input_variables does not fit the placeholders in the input body.
"""
input_variables = (
self.input_variables if self.input_variables is not None else []
)
self._validate_prompt(
input_variables,
(self.input_text if self.input_text is not None else ""),
)
[docs]
class PromptTemplateManager(WMLResource):
"""Instantiate the prompt template manager.
:param credentials: credentials for the watsonx.ai instance
:type credentials: Credentials or dict, optional
:param project_id: ID of the project
:type project_id: str, optional
:param space_id: ID of the space
:type space_id: str, optional
:param verify: You can pass one of the following as verify:
* the path to a CA_BUNDLE file
* the path of directory with certificates of trusted CAs
* `True` - default path to truststore will be taken
* `False` - no verification will be made
:type verify: bool or str, optional
.. note::
One of these parameters is required: ['project_id ', 'space_id']
**Example:**
.. code-block:: python
from ibm_watsonx_ai import Credentials
from ibm_watsonx_ai.foundation_models.prompts import PromptTemplate, PromptTemplateManager
from ibm_watsonx_ai.foundation_models.utils.enums import ModelTypes
prompt_mgr = PromptTemplateManager(
credentials=Credentials(
api_key=IAM_API_KEY,
url="https://us-south.ml.cloud.ibm.com"
),
project_id="*****"
)
prompt_template = PromptTemplate(name="My prompt",
model_id=ModelTypes.GRANITE_13B_CHAT_V2,
input_prefix="Human:",
output_prefix="Assistant:",
input_text="What is {object} and how does it work?",
input_variables=['object'],
examples=[['What is the Stock Market?',
'A stock market is a place where investors buy and sell shares of publicly traded companies.']])
stored_prompt_template = prompt_mgr.store_prompt(prompt_template)
print(stored_prompt_template.prompt_id) # id of prompt template asset
.. note::
Here's an example of how you can pass variables to your deployed prompt template:
.. code-block:: python
from ibm_watsonx_ai.metanames import GenTextParamsMetaNames
meta_props = {
client.deployments.ConfigurationMetaNames.NAME: "SAMPLE DEPLOYMENT PROMPT TEMPLATE",
client.deployments.ConfigurationMetaNames.ONLINE: {},
client.deployments.ConfigurationMetaNames.BASE_MODEL_ID: ModelTypes.GRANITE_13B_CHAT_V2
}
deployment_details = client.deployments.create(stored_prompt_template.prompt_id, meta_props)
client.deployments.generate_text(
deployment_id=deployment_details["metadata"]["id"],
params={
GenTextParamsMetaNames.PROMPT_VARIABLES: {
"object": "brain"
}
}
)
"""
def __init__(
self,
credentials: Credentials | dict | None = None,
*,
project_id: str | None = None,
space_id: str | None = None,
verify: str | bool | None = None,
api_client: APIClient | None = None,
) -> None:
self.project_id = project_id
self.space_id = space_id
if credentials:
self._client = APIClient(credentials, verify=verify)
elif api_client is not None:
self._client = api_client
else:
raise InvalidMultipleArguments(
params_names_list=["credentials", "api_client"],
reason="None of the arguments were provided.",
)
if self.space_id is not None and self.project_id is not None:
raise InvalidMultipleArguments(
params_names_list=["project_id", "space_id"],
reason="Both arguments were provided.",
)
if self.space_id is not None:
self._client.set.default_space(self.space_id)
elif self.project_id is not None:
self._client.set.default_project(self.project_id)
elif api_client is not None:
if project_id := self._client.default_project_id:
self.project_id = project_id
elif space_id := self._client.default_space_id:
self.space_id = space_id
else:
pass
elif not api_client:
raise InvalidMultipleArguments(
params_names_list=["space_id", "project_id"],
reason="None of the arguments were provided.",
)
if not self._client.CLOUD_PLATFORM_SPACES and self._client.CPD_version < 4.8:
raise WMLClientError(error_msg="Operation is unsupported for this release.")
WMLResource.__init__(self, __name__, self._client)
@property
def _params(self) -> dict[str, str]:
"""Request params"""
if self.space_id is not None and self.project_id is not None:
raise InvalidMultipleArguments(
params_names_list=["project_id", "space_id"],
reason="Both arguments were set.",
)
elif self.project_id is not None:
return {"project_id": self.project_id}
elif self.space_id is not None:
return {"space_id": self.space_id}
else:
raise InvalidMultipleArguments(
params_names_list=["space_id", "project_id"],
reason="None of the parameters were set.",
)
def _create_request_body(self, prompt_template: BasePromptTemplate) -> dict:
"""Create a request body from a PromptTemplate object.
:param prompt_template: PromptTemplate object based on which the request
body will be created.
:type prompt_template: BasePromptTemplate
:return: Request body
:rtype: dict
"""
json_data: dict = {"prompt": dict()}
if prompt_template.description is not None:
json_data.update({"description": prompt_template.description})
if prompt_template.input_variables is not None:
PromptTemplateManager._validate_type(
prompt_template.input_variables, "input_variables", [dict, list], False
)
if isinstance(prompt_template.input_variables, list):
json_data.update(
{
"prompt_variables": {
key: {} for key in prompt_template.input_variables
}
}
)
else:
json_data.update({"prompt_variables": prompt_template.input_variables})
if prompt_template.task_ids is not None:
PromptTemplateManager._validate_type(
prompt_template.task_ids, "task_ids", list, False
)
json_data.update({"task_ids": prompt_template.task_ids})
if prompt_template.template_version is not None:
json_data.update(
{"model_version": {"number": prompt_template.template_version}}
)
if hasattr(prompt_template, "_input_mode"):
json_data.update({"input_mode": prompt_template._input_mode})
if prompt_template.input_text:
PromptTemplateManager._validate_type(
prompt_template.input_text, "input_text", str, False
)
json_data["prompt"].update({"input": [[prompt_template.input_text, ""]]})
PromptTemplateManager._validate_type(
prompt_template.model_id, "model_id", str, True
)
if prompt_template.model_id is not None:
json_data["prompt"].update({"model_id": prompt_template.model_id})
if prompt_template.model_params is not None:
PromptTemplateManager._validate_type(
prompt_template.model_params, "model_parameters", dict, False
)
json_data["prompt"].update(
{"model_parameters": prompt_template.model_params}
)
if hasattr(prompt_template, "external_information"):
json_data["prompt"].update(
{"external_information": prompt_template.external_information}
)
data: dict = dict()
if isinstance(prompt_template, PromptTemplate):
if prompt_template.instruction is not None:
data.update({"instruction": prompt_template.instruction})
if prompt_template.input_prefix is not None:
data.update({"input_prefix": prompt_template.input_prefix})
if prompt_template.output_prefix is not None:
data.update({"output_prefix": prompt_template.output_prefix})
if prompt_template.examples is not None:
PromptTemplateManager._validate_type(
prompt_template.examples, "examples", list, False
)
data.update({"examples": prompt_template.examples})
elif isinstance(prompt_template, DetachedPromptTemplate):
external_information: dict = dict()
PromptTemplateManager._validate_type(
prompt_template.detached_prompt_id, "detached_prompt_id", str, True
)
PromptTemplateManager._validate_type(
prompt_template.detached_model_id, "detached_model_id", str, True
)
PromptTemplateManager._validate_type(
prompt_template.detached_model_provider,
"detached_model_provider",
str,
True,
)
external_information.update(
{
"external_prompt_id": prompt_template.detached_prompt_id,
"external_model_id": prompt_template.detached_model_id,
"external_model_provider": prompt_template.detached_model_provider,
}
)
if prompt_template.detached_prompt_additional_information is not None:
PromptTemplateManager._validate_type(
prompt_template.detached_prompt_url,
"detached_prompt_url",
str,
True,
)
external_information.update(
{
"external_prompt": {
"url": prompt_template.detached_prompt_url,
"additional_information": prompt_template.detached_prompt_additional_information,
}
}
)
if (
prompt_template.detached_model_name is not None
or prompt_template.detached_model_url is not None
):
PromptTemplateManager._validate_type(
prompt_template.detached_model_url,
"detached_model_url",
str,
True,
)
PromptTemplateManager._validate_type(
prompt_template.detached_model_name,
"detached_model_name",
str,
True,
)
external_information.update(
{
"external_model": {
"url": prompt_template.detached_model_url,
"name": prompt_template.detached_model_name,
}
}
)
json_data["prompt"].update({"external_information": external_information})
json_data["prompt"].update({"data": data})
return json_data
def _from_json_to_prompt(
self, response: dict
) -> FreeformPromptTemplate | PromptTemplate | DetachedPromptTemplate:
"""Convert json response to FreeformPromptTemplate or PromptTemplate object.
:param response: Response body after request operation.
:type response: dict
:return: PromptTemplate object with given details.
:rtype: FreeformPromptTemplate | PromptTemplate
"""
prompt_field: dict = response.get("prompt", dict())
data_field: dict = prompt_field.get("data", dict())
prompt_template: (
FreeformPromptTemplate | PromptTemplate | DetachedPromptTemplate
)
match response.get("input_mode"):
case "freeform":
prompt_template = FreeformPromptTemplate(
name=response.get("name"),
description=response.get("description"),
model_id=prompt_field.get("model_id"),
model_params=prompt_field.get("model_parameters"),
task_ids=response.get("task_ids"),
template_version=response.get("model_version", dict()).get(
"number"
),
input_variables=response.get("prompt_variables"),
input_text=prompt_field.get("input", [[None, None]])[0][0],
validate_template=False,
)
case "detached":
external_information_field: dict = prompt_field.get(
"external_information", {}
)
prompt_template = DetachedPromptTemplate(
name=response.get("name"),
description=response.get("description"),
model_id=prompt_field.get("model_id"),
model_params=prompt_field.get("model_parameters"),
task_ids=response.get("task_ids"),
template_version=response.get("model_version", dict()).get(
"number"
),
input_variables=response.get("prompt_variables"),
input_text=prompt_field.get("input", [[None, None]])[0][0],
detached_prompt_id=external_information_field.get(
"external_prompt_id"
),
detached_model_id=external_information_field.get(
"external_model_id"
),
detached_model_provider=external_information_field.get(
"external_model_provider"
),
detached_prompt_url=external_information_field.get(
"external_prompt", {}
).get("url"),
detached_prompt_additional_information=external_information_field.get(
"external_prompt", {}
).get(
"additional_information"
),
detached_model_name=external_information_field.get(
"external_model", {}
).get("name"),
detached_model_url=external_information_field.get(
"external_model", {}
).get("url"),
validate_template=False,
)
case _:
prompt_template = PromptTemplate(
name=response.get("name"),
description=response.get("description"),
model_id=prompt_field.get("model_id"),
model_params=prompt_field.get("model_parameters"),
task_ids=response.get("task_ids"),
template_version=response.get("model_version", dict()).get(
"number"
),
input_variables=response.get("prompt_variables"),
input_text=prompt_field.get("input", [[None, None]])[0][0],
instruction=data_field.get("instruction"),
input_prefix=data_field.get("input_prefix"),
output_prefix=data_field.get("output_prefix"),
examples=data_field.get("examples"),
validate_template=False,
)
prompt_template._prompt_id = response.get("id")
prompt_template._created_at = response.get("created_at")
prompt_template._lock = PromptTemplateLock(
**response.get("lock", {"locked": None, "locked_by": None})
)
prompt_template._is_template = response.get("is_template")
return prompt_template
def _get_details(self, limit: int | None = None) -> list:
"""Get details of all prompt templates. If limit is set to None,
then all prompt templates are fetched.
:param limit: limit number of fetched records, defaults to None.
:type limit: int | None
:return: List of prompts metadata
:rtype: List
"""
headers = self._client._get_headers()
url = self._client.service_instance._href_definitions.get_prompts_all_href()
json_data: dict[str, int | str] = {
"query": "asset.asset_type:wx_prompt",
"sort": "-asset.created_at<string>",
}
if limit is not None:
if limit < 1:
raise WMLClientError("Limit cannot be lower than 1.")
elif limit > 200:
raise WMLClientError("Limit cannot be larger than 200.")
json_data.update({"limit": limit})
else:
json_data.update({"limit": 200})
prompts_list = []
bookmark = True
while bookmark is not None:
response = requests.post(
url=url, json=json_data, headers=headers, params=self._params
)
details_json = self._handle_response(200, "Get next details", response)
bookmark = details_json.get("next", {"href": None}).get("bookmark", None)
prompts_list.extend(details_json.get("results", []))
if limit is not None:
break
json_data.update({"bookmark": bookmark})
return prompts_list
def _change_lock(self, prompt_id: str, locked: bool, force: bool = False) -> dict:
"""Change the state of a prompt template lock.
:param prompt_id: ID of the prompt template
:type prompt_id: str
:param locked: new state of the lock
:type locked: bool
:param force: force lock state overwrite, defaults to False.
:type force: bool, optional
:return: changed state of the lock
:rtype: dict
"""
headers = self._client._get_headers()
params = self._params | {"prompt_id": prompt_id, "force": force}
json_data = {"locked": locked}
url = (
self._client.service_instance._href_definitions.get_prompts_href(
ga_api=self._client._use_pta_ga_api
)
+ f"/{prompt_id}/lock"
)
response = requests.put(url=url, json=json_data, headers=headers, params=params)
return self._handle_response(200, "change_lock", response)
@overload
def load_prompt(
self,
prompt_id: str,
astype: Literal[PromptTemplateFormats.STRING, "string"],
*,
prompt_variables: dict[str, str] | None = None,
) -> str: ...
@overload
def load_prompt(
self,
prompt_id: str,
astype: Literal[PromptTemplateFormats.LANGCHAIN, "langchain"],
*,
prompt_variables: dict[str, str] | None = None,
) -> LcPromptTemplate: ...
@overload
def load_prompt(
self,
prompt_id: str,
astype: Literal[
PromptTemplateFormats.PROMPTTEMPLATE, "prompt"
] = PromptTemplateFormats.PROMPTTEMPLATE,
*,
prompt_variables: dict[str, str] | None = None,
) -> FreeformPromptTemplate | PromptTemplate | DetachedPromptTemplate: ...
[docs]
def load_prompt(
self,
prompt_id: str,
astype: PromptTemplateFormats | str = PromptTemplateFormats.PROMPTTEMPLATE,
*,
prompt_variables: dict[str, str] | None = None,
) -> (
FreeformPromptTemplate
| PromptTemplate
| DetachedPromptTemplate
| str
| LcPromptTemplate
):
"""Retrieve a prompt template asset.
:param prompt_id: ID of the processed prompt template
:type prompt_id: str
:param astype: type of return object
:type astype: PromptTemplateFormats
:param prompt_variables: dictionary of input variables and values that will replace the input variables
:type prompt_variables: dict[str, str]
:return: prompt template asset
:rtype: FreeformPromptTemplate | PromptTemplate | DetachedPromptTemplate | str | langchain.prompts.PromptTemplate
**Example:**
.. code-block:: python
loaded_prompt_template = prompt_mgr.load_prompt(prompt_id)
loaded_prompt_template_lc = prompt_mgr.load_prompt(prompt_id, PromptTemplateFormats.LANGCHAIN)
loaded_prompt_template_string = prompt_mgr.load_prompt(prompt_id, PromptTemplateFormats.STRING)
"""
headers = self._client._get_headers()
params = self._params | {"prompt_id": prompt_id}
url = (
self._client.service_instance._href_definitions.get_prompts_href(
ga_api=self._client._use_pta_ga_api
)
+ f"/{prompt_id}"
)
if isinstance(astype, PromptTemplateFormats):
astype = astype.value
if astype == "prompt":
response = requests.get(url=url, headers=headers, params=params)
return self._from_json_to_prompt(
self._handle_response(200, "_load_json_prompt", response)
)
elif astype in ("langchain", "string"):
response = requests.post(url=url + "/input", headers=headers, params=params)
response_input = self._handle_response(200, "load_prompt", response).get(
"input"
)
response_input = cast(str, response_input)
if astype == "string":
try:
return (
response_input
if prompt_variables is None
else response_input.format(**prompt_variables)
)
except KeyError as key:
raise PromptVariablesError(str(key))
else:
from langchain.prompts import PromptTemplate as LcPromptTemplate
return LcPromptTemplate.from_template(response_input)
else:
raise InvalidValue("astype")
[docs]
def list(self, *, limit: int | None = None) -> pandas.DataFrame:
"""List all available prompt templates in the DataFrame format.
:param limit: limit number of fetched records, defaults to None.
:type limit: int, optional
:return: DataFrame of fundamental properties of available prompts.
:rtype: pandas.core.frame.DataFrame
**Example:**
.. code-block:: python
prompt_mgr.list(limit=5) # list of 5 recent created prompt template assets
.. hint::
Additionally you can sort available prompt templates by "LAST MODIFIED" field.
.. code-block:: python
df_prompts = prompt_mgr.list()
df_prompts.sort_values("LAST MODIFIED", ascending=False)
"""
details = [
"metadata.asset_id",
"metadata.name",
"metadata.created_at",
"metadata.usage.last_updated_at",
]
prompts_details = self._get_details(limit=limit)
data_normalize = pandas.json_normalize(prompts_details)
prompts_data = data_normalize.reindex(columns=details)
df_details = pandas.DataFrame(prompts_data, columns=details)
df_details.rename(
columns={
"metadata.asset_id": "ID",
"metadata.name": "NAME",
"metadata.created_at": "CREATED",
"metadata.usage.last_updated_at": "LAST MODIFIED",
},
inplace=True,
)
return df_details
[docs]
def store_prompt(
self,
prompt_template: (
FreeformPromptTemplate
| PromptTemplate
| DetachedPromptTemplate
| langchain.prompts.PromptTemplate
),
) -> FreeformPromptTemplate | PromptTemplate | DetachedPromptTemplate:
"""Store a new prompt template.
:param prompt_template: PromptTemplate to be stored.
:type prompt_template: (FreeformPromptTemplate | PromptTemplate | DetachedPromptTemplate | langchain.prompts.PromptTemplate)
:return: PromptTemplate object that is initialized with values provided in the server response object.
:rtype: FreeformPromptTemplate | PromptTemplate | DetachedPromptTemplate
"""
if isinstance(
prompt_template,
(PromptTemplate | FreeformPromptTemplate | DetachedPromptTemplate),
):
pass
else:
from langchain.prompts import PromptTemplate as LcPromptTemplate
if isinstance(prompt_template, LcPromptTemplate):
def get_metadata_value(
prompt_temp: LcPromptTemplate,
key: str,
default: ModelTypes | list | bool | str | None = None,
must_be_list: bool = False,
must_be_nested_list: bool = False,
) -> Any:
if (
hasattr(prompt_temp, "metadata")
and prompt_temp.metadata
and key in prompt_temp.metadata
):
if must_be_list:
if isinstance(prompt_temp.metadata[key], str):
return [prompt_temp.metadata[key]]
return prompt_temp.metadata[key]
elif must_be_nested_list:
if isinstance(prompt_temp.metadata[key], str):
return [[prompt_temp.metadata[key]]]
elif isinstance(prompt_temp.metadata[key], list):
if isinstance(prompt_temp.metadata[key][0], str):
return [prompt_temp.metadata[key]]
return prompt_temp.metadata[key]
else:
return prompt_temp.metadata[key]
else:
return default
match get_metadata_value(prompt_template, "input_mode", "structured"):
case "structured":
prompt_template = PromptTemplate(
name=get_metadata_value(
prompt_template, "name", "My prompt"
),
model_id=get_metadata_value(
prompt_template, "model_id", ModelTypes.FLAN_UL2
),
model_params=get_metadata_value(
prompt_template, "model_params", None
),
template_version=get_metadata_value(
prompt_template, "template_version", None
),
task_ids=get_metadata_value(
prompt_template, "task_ids", None, must_be_list=True
),
description=get_metadata_value(
prompt_template, "description", None
),
input_text=get_metadata_value(
prompt_template, "input_text", prompt_template.template
),
input_variables=get_metadata_value(
prompt_template,
"input_variables",
prompt_template.input_variables,
),
instruction=get_metadata_value(
prompt_template, "instruction", None
),
input_prefix=get_metadata_value(
prompt_template, "input_prefix", None
),
output_prefix=get_metadata_value(
prompt_template, "output_prefix", None
),
examples=get_metadata_value(
prompt_template,
"examples",
None,
must_be_nested_list=True,
),
validate_template=get_metadata_value(
prompt_template, "validate_template", True
),
)
case "freeform":
prompt_template = FreeformPromptTemplate(
name=get_metadata_value(
prompt_template, "name", "My prompt"
),
model_id=get_metadata_value(
prompt_template, "model_id", ModelTypes.FLAN_UL2
),
model_params=get_metadata_value(
prompt_template, "model_params", None
),
template_version=get_metadata_value(
prompt_template, "template_version", None
),
task_ids=get_metadata_value(
prompt_template, "task_ids", None, must_be_list=True
),
description=get_metadata_value(
prompt_template, "description", None
),
input_text=get_metadata_value(
prompt_template, "input_text", prompt_template.template
),
input_variables=get_metadata_value(
prompt_template,
"input_variables",
prompt_template.input_variables,
),
validate_template=get_metadata_value(
prompt_template, "validate_template", True
),
)
case "detached":
prompt_template = DetachedPromptTemplate(
name=get_metadata_value(
prompt_template, "name", "My prompt"
),
model_id=get_metadata_value(
prompt_template, "model_id", ModelTypes.FLAN_UL2
),
model_params=get_metadata_value(
prompt_template, "model_params", None
),
template_version=get_metadata_value(
prompt_template, "template_version", None
),
task_ids=get_metadata_value(
prompt_template, "task_ids", None, must_be_list=True
),
description=get_metadata_value(
prompt_template, "description", None
),
input_text=get_metadata_value(
prompt_template, "input_text", prompt_template.template
),
input_variables=get_metadata_value(
prompt_template,
"input_variables",
prompt_template.input_variables,
),
**{
param: get_metadata_value(
prompt_template, param, prop.default
)
for param, prop in inspect.signature(
DetachedPromptTemplate.__init__
).parameters.items()
if param.startswith("detached")
},
validate_template=get_metadata_value(
prompt_template,
"validate_template",
True,
),
)
case _:
raise WMLClientError(error_msg="Unsupported `input_mode`")
else:
raise WMLClientError(error_msg="Unsupported type for `prompt_template`")
headers = self._client._get_headers()
PromptTemplateManager._validate_type(
prompt_template.name, "prompt_template.name", str, True
)
json_data: dict = {
"name": prompt_template.name,
"lock": {"locked": True},
"input_mode": prompt_template._input_mode,
"prompt": dict(),
}
json_data.update(self._create_request_body(prompt_template))
url = self._client.service_instance._href_definitions.get_prompts_href(
ga_api=self._client._use_pta_ga_api
)
response = requests.post(
url=url, json=json_data, headers=headers, params=self._params
)
response = self._handle_response(201, "store_prompt", response)
return self._from_json_to_prompt(response)
[docs]
def delete_prompt(self, prompt_id: str, *, force: bool = False) -> str:
"""Remove a prompt template from a project or space.
:param prompt_id: ID of the prompt template to be deleted
:type prompt_id: str
:param force: if True, then the prompt template is unlocked and then deleted, defaults to False.
:type force: bool
:return: status 'SUCCESS' if the prompt template is successfully deleted
:rtype: str
**Example:**
.. code-block:: python
prompt_mgr.delete_prompt(prompt_id) # delete if asset is unlocked
"""
if force:
self.unlock(prompt_id)
headers = self._client._get_headers()
params = self._params | {"prompt_id": prompt_id}
url = (
self._client.service_instance._href_definitions.get_prompts_href(
ga_api=self._client._use_pta_ga_api
)
+ f"/{prompt_id}"
)
response = requests.delete(url=url, headers=headers, params=params)
return self._handle_response(204, "delete_prompt", response) # type: ignore[return-value]
[docs]
def update_prompt(
self,
prompt_id: str,
prompt_template: (
FreeformPromptTemplate | PromptTemplate | DetachedPromptTemplate
),
) -> dict:
"""Update prompt template data.
:param prompt_id: ID of the prompt template to be updated
:type prompt_id: str
:param prompt: prompt template with new data
:type prompt: FreeformPromptTemplate | PromptTemplate | DetachedPromptTemplate
:return: metadata of the updated deployment
:rtype: dict
**Example:**
.. code-block:: python
updataed_prompt_template = PromptTemplate(name="New name")
prompt_mgr.update_prompt(prompt_id, prompt_template) # {'name': 'New name'} in metadata
"""
headers = self._client._get_headers()
params = self._params | {"prompt_id": prompt_id}
new_body: dict = dict()
current_prompt_template = self.load_prompt(prompt_id)
if not isinstance(prompt_template, type(current_prompt_template)):
raise TypeError(
(
"Type of `prompt_template` is not consistent with"
" the input mode of the updated Prompt Template Asset: "
f"input_mode={current_prompt_template._input_mode}"
)
)
for attribute in prompt_template.__dict__:
if getattr(
prompt_template, attribute
) is not None and not attribute.startswith("_"):
setattr(
current_prompt_template,
attribute,
getattr(prompt_template, attribute),
)
if current_prompt_template.name is not None:
new_body.update({"name": current_prompt_template.name})
new_body.update(self._create_request_body(current_prompt_template))
url = (
self._client.service_instance._href_definitions.get_prompts_href(
ga_api=self._client._use_pta_ga_api
)
+ f"/{prompt_id}"
)
response = requests.patch(
url=url, json=new_body, headers=headers, params=params
)
return self._handle_response(200, "update_prompt", response)
[docs]
def get_lock(self, prompt_id: str) -> dict:
"""Get the current locked state of a prompt template.
:param prompt_id: ID of the prompt template
:type prompt_id: str
:return: information about the locked state of a prompt template asset
:rtype: dict
**Example:**
.. code-block:: python
print(prompt_mgr.get_lock(prompt_id))
"""
headers = self._client._get_headers()
params = self._params | {"prompt_id": prompt_id}
url = (
self._client.service_instance._href_definitions.get_prompts_href(
ga_api=self._client._use_pta_ga_api
)
+ f"/{prompt_id}/lock"
)
response = requests.get(url=url, headers=headers, params=params)
return self._handle_response(200, "get_lock", response)
[docs]
def lock(self, prompt_id: str, force: bool = False) -> dict:
"""Lock a prompt template if it is unlocked and you have permission to lock it.
:param prompt_id: ID of the prompt template
:type prompt_id: str
:param force: if True, lock is forcefully overwritten
:type force: bool
:return: locked prompt template
:rtype: dict
**Example:**
.. code-block:: python
prompt_mgr.lock(prompt_id)
"""
return self._change_lock(prompt_id=prompt_id, locked=True, force=force)
[docs]
def unlock(self, prompt_id: str) -> dict:
"""Unlock a prompt template if it is locked and you have permission to unlock it.
:param prompt_id: ID of the prompt template
:type prompt_id: str
:return: unlocked prompt template
:rtype: dict
**Example:**
.. code-block:: python
prompt_mgr.unlock(prompt_id)
"""
# server returns status code 400 after trying to unlock unlocked prompt
lock_state = self.get_lock(prompt_id)
if lock_state["locked"]:
return self._change_lock(prompt_id=prompt_id, locked=False, force=False)
else:
return lock_state