Source code for ibm_watsonx_ai.training

#  -----------------------------------------------------------------------------------------
#  (C) Copyright IBM Corp. 2023-2024.
#  https://opensource.org/licenses/BSD-3-Clause
#  -----------------------------------------------------------------------------------------

from __future__ import annotations
from typing import Any, TYPE_CHECKING, TypeAlias, Iterator, Literal, Callable

import json
import logging
import time

from ibm_boto3.exceptions import Boto3Error
from lomond import WebSocket

import ibm_watsonx_ai._wrappers.requests as requests
from ibm_watsonx_ai.messages.messages import Messages
from ibm_watsonx_ai.metanames import TrainingConfigurationMetaNames
from ibm_watsonx_ai.utils import (
    print_text_header_h1,
    print_text_header_h2,
    TRAINING_RUN_DETAILS_TYPE,
    StatusLogger,
)
from ibm_watsonx_ai.utils.utils import _get_id_from_deprecated_uid
from ibm_watsonx_ai.wml_client_error import WMLClientError, ApiRequestFailure
from ibm_watsonx_ai.wml_resource import WMLResource

logging.getLogger("lomond").setLevel(logging.CRITICAL)
ListType: TypeAlias = list

if TYPE_CHECKING:
    from ibm_watsonx_ai import APIClient
    from pandas import DataFrame


[docs] class Training(WMLResource): """Train new models.""" def __init__(self, client: APIClient) -> None: WMLResource.__init__(self, __name__, client) self.ConfigurationMetaNames = TrainingConfigurationMetaNames()
[docs] def get_status(self, training_id: str | None = None, **kwargs: Any) -> dict: """Get the status of a created training. :param training_id: ID of the training :type training_id: str :return: training_status :rtype: dict **Example:** .. code-block:: python training_status = client.training.get_status(training_id) """ training_id = _get_id_from_deprecated_uid( kwargs, training_id, "training", can_be_none=False ) _is_fine_tuning = kwargs.get("_is_fine_tuning", False) Training._validate_type(training_id, "training_id", str, True) details = self.get_details( training_id, _internal=True, _is_fine_tuning=_is_fine_tuning ) if details is not None: return WMLResource._get_required_element_from_dict( details, "details", ["entity", "status"] ) else: raise WMLClientError( "Getting trained model status failed. Unable to get model details for training_id: '{}'.".format( training_id ) )
[docs] def get_details( self, training_id: str | None = None, limit: int | None = None, asynchronous: bool = False, get_all: bool = False, training_type: str | None = None, state: str | None = None, tag_value: str | None = None, training_definition_id: str | None = None, _internal: bool = False, **kwargs: Any, ) -> dict: """Get metadata of training(s). If training_id is not specified, the metadata of all model spaces are returned. :param training_id: unique ID of the training :type training_id: str, optional :param limit: limit number of fetched records :type limit: int, optional :param asynchronous: if `True`, it will work as a generator :type asynchronous: bool, optional :param get_all: if `True`, it will get all entries in 'limited' chunks :type get_all: bool, optional :param training_type: filter the fetched list of trainings based on the training type ["pipeline" or "experiment"] :type training_type: str, optional :param state: filter the fetched list of training based on their state: [`queued`, `running`, `completed`, `failed`] :type state: str, optional :param tag_value: filter the fetched list of training based on their tag value :type tag_value: str, optional :param training_definition_id: filter the fetched trainings that are using the given training definition :type training_definition_id: str, optional :return: metadata of training(s) :rtype: - **dict** - if training_id is not None - **{"resources": [dict]}** - if training_id is None **Examples** .. code-block:: python training_run_details = client.training.get_details(training_id) training_runs_details = client.training.get_details() training_runs_details = client.training.get_details(limit=100) training_runs_details = client.training.get_details(limit=100, get_all=True) training_runs_details = [] for entry in client.training.get_details(limit=100, asynchronous=True, get_all=True): training_runs_details.extend(entry) """ training_id = _get_id_from_deprecated_uid( kwargs, training_id, "training", can_be_none=True ) _is_fine_tuning = kwargs.get("_is_fine_tuning", False) # For CP4D, check if either spce or project ID is set self._client._check_if_either_is_set() Training._validate_type(training_id, "training_id", str, False) if _is_fine_tuning: url = ( self._client.service_instance._href_definitions.get_fine_tunings_href() ) else: url = self._client.service_instance._href_definitions.get_trainings_href() if training_id is None: query_params: dict | None = { param_name: param_value for param_name, param_value in ( ("type", training_type), ("state", state), ("tag.value", tag_value), ("training_definition_id", training_definition_id), ) if param_value is not None } # note: If query params is an empty dict convert it back to None value query_params = query_params if query_params != {} else None return self._get_artifact_details( url, training_id, limit, "trained models", _async=asynchronous, _all=get_all, query_params=query_params, ) else: return self._get_artifact_details(url, training_id, limit, "trained models")
[docs] @staticmethod def get_href(training_details: dict) -> str: """Get the training href from the training details. :param training_details: metadata of the created training :type training_details: dict :return: training href :rtype: str **Example:** .. code-block:: python training_details = client.training.get_details(training_id) run_url = client.training.get_href(training_details) """ Training._validate_type(training_details, "training_details", object, True) if "id" in training_details.get("metadata", {}): training_id = WMLResource._get_required_element_from_dict( training_details, "training_details", ["metadata", "id"] ) return "/ml/v4/trainings/" + training_id else: Training._validate_type_of_details( training_details, TRAINING_RUN_DETAILS_TYPE ) return WMLResource._get_required_element_from_dict( training_details, "training_details", ["metadata", "href"] )
[docs] @staticmethod def get_id(training_details: dict) -> str: """Get the training ID from the training details. :param training_details: metadata of the created training :type training_details: dict :return: unique ID of the training :rtype: str **Example:** .. code-block:: python training_details = client.training.get_details(training_id) training_id = client.training.get_id(training_details) """ Training._validate_type(training_details, "training_details", object, True) return WMLResource._get_required_element_from_dict( training_details, "training_details", ["metadata", "id"] )
[docs] def run(self, meta_props: dict, asynchronous: bool = True, **kwargs: Any) -> dict: """Create a new Machine Learning training. :param meta_props: metadata of the training configuration. To see available meta names, use: .. code-block:: python client.training.ConfigurationMetaNames.show() :type meta_props: dict :param asynchronous: * `True` - training job is submitted and progress can be checked later * `False` - method will wait till job completion and print training stats :type asynchronous: bool, optional :return: metadata of the training created :rtype: dict .. note:: You can provide one of the following values for training: * client.training.ConfigurationMetaNames.EXPERIMENT * client.training.ConfigurationMetaNames.PIPELINE * client.training.ConfigurationMetaNames.MODEL_DEFINITION **Examples** Example of meta_props for creating a training run in IBM Cloud Pak® for Data version 3.0.1 or above: .. code-block:: python metadata = { client.training.ConfigurationMetaNames.NAME: 'Hand-written Digit Recognition', client.training.ConfigurationMetaNames.DESCRIPTION: 'Hand-written Digit Recognition Training', client.training.ConfigurationMetaNames.PIPELINE: { "id": "4cedab6d-e8e4-4214-b81a-2ddb122db2ab", "rev": "12", "model_type": "string", "data_bindings": [ { "data_reference_name": "string", "node_id": "string" } ], "nodes_parameters": [ { "node_id": "string", "parameters": {} } ], "hardware_spec": { "id": "4cedab6d-e8e4-4214-b81a-2ddb122db2ab", "rev": "12", "name": "string", "num_nodes": "2" } }, client.training.ConfigurationMetaNames.TRAINING_DATA_REFERENCES: [{ 'type': 's3', 'connection': {}, 'location': {'href': 'v2/assets/asset1233456'}, 'schema': { 'id': 't1', 'name': 'Tasks', 'fields': [ { 'name': 'duration', 'type': 'number' } ]} }], client.training.ConfigurationMetaNames.TRAINING_RESULTS_REFERENCE: { 'id' : 'string', 'connection': { 'endpoint_url': 'https://s3-api.us-geo.objectstorage.service.networklayer.com', 'access_key_id': '***', 'secret_access_key': '***' }, 'location': { 'bucket': 'wml-dev-results', 'path' : "path" } 'type': 's3' } } Example of a Federated Learning training job: .. code-block:: python aggregator_metadata = { client.training.ConfigurationMetaNames.NAME: 'Federated_Learning_Tensorflow_MNIST', client.training.ConfigurationMetaNames.DESCRIPTION: 'MNIST digit recognition with Federated Learning using Tensorflow', client.training.ConfigurationMetaNames.TRAINING_DATA_REFERENCES: [], client.training.ConfigurationMetaNames.TRAINING_RESULTS_REFERENCE: { 'type': results_type, 'name': 'outputData', 'connection': {}, 'location': { 'path': '/projects/' + PROJECT_ID + '/assets/trainings/'} }, client.training.ConfigurationMetaNames.FEDERATED_LEARNING: { 'model': { 'type': 'tensorflow', 'spec': { 'id': untrained_model_id }, 'model_file': untrained_model_name }, 'fusion_type': 'iter_avg', 'metrics': 'accuracy', 'epochs': 3, 'rounds': 10, 'remote_training' : { 'quorum': 1.0, 'max_timeout': 3600, 'remote_training_systems': [ { 'id': prime_rts_id }, { 'id': nonprime_rts_id} ] }, 'hardware_spec': { 'name': 'S' }, 'software_spec': { 'name': 'runtime-22.1-py3.9' } } aggregator = client.training.run(aggregator_metadata, asynchronous=True) aggregator_id = client.training.get_id(aggregator) """ # For CP4D, check if either spce or project ID is set self._client._check_if_either_is_set() Training._validate_type(meta_props, "meta_props", object, True) Training._validate_type(asynchronous, "asynchronous", bool, True) _is_fine_tuning = kwargs.get("_is_fine_tuning", False) self.ConfigurationMetaNames._validate(meta_props) training_configuration_metadata = { "training_data_references": meta_props[ self.ConfigurationMetaNames.TRAINING_DATA_REFERENCES ], "results_reference": meta_props[ self.ConfigurationMetaNames.TRAINING_RESULTS_REFERENCE ], } if self.ConfigurationMetaNames.TEST_DATA_REFERENCES in meta_props: training_configuration_metadata["test_data_references"] = meta_props[ self.ConfigurationMetaNames.TEST_DATA_REFERENCES ] if self.ConfigurationMetaNames.TEST_OUTPUT_DATA in meta_props: training_configuration_metadata["test_output_data"] = meta_props[ self.ConfigurationMetaNames.TEST_OUTPUT_DATA ] if self.ConfigurationMetaNames.TAGS in meta_props: training_configuration_metadata["tags"] = meta_props[ self.ConfigurationMetaNames.TAGS ] if self.ConfigurationMetaNames.PROMPT_TUNING in meta_props: training_configuration_metadata["prompt_tuning"] = meta_props[ self.ConfigurationMetaNames.PROMPT_TUNING ] if self.ConfigurationMetaNames.FINE_TUNING in meta_props: training_configuration_metadata["parameters"] = meta_props[ self.ConfigurationMetaNames.FINE_TUNING ] if self.ConfigurationMetaNames.AUTO_UPDATE_MODEL in meta_props: training_configuration_metadata["auto_update_model"] = meta_props[ self.ConfigurationMetaNames.AUTO_UPDATE_MODEL ] # TODO remove when training service starts copying such data on their own training_configuration_metadata["name"] = meta_props[ self.ConfigurationMetaNames.NAME ] training_configuration_metadata["description"] = meta_props[ self.ConfigurationMetaNames.DESCRIPTION ] if self.ConfigurationMetaNames.PIPELINE in meta_props: training_configuration_metadata["pipeline"] = meta_props[ self.ConfigurationMetaNames.PIPELINE ] if self.ConfigurationMetaNames.EXPERIMENT in meta_props: training_configuration_metadata["experiment"] = meta_props[ self.ConfigurationMetaNames.EXPERIMENT ] if self.ConfigurationMetaNames.MODEL_DEFINITION in meta_props: training_configuration_metadata["model_definition"] = meta_props[ self.ConfigurationMetaNames.MODEL_DEFINITION ] if self.ConfigurationMetaNames.SPACE_UID in meta_props: training_configuration_metadata["space_id"] = meta_props[ self.ConfigurationMetaNames.SPACE_UID ] if ( self._client.default_space_id is None and self._client.default_project_id is None ): raise WMLClientError( Messages.get_message( message_id="it_is_mandatory_to_set_the_space_project_id" ) ) else: if self._client.default_space_id is not None: training_configuration_metadata["space_id"] = ( self._client.default_space_id ) elif self._client.default_project_id is not None: training_configuration_metadata["project_id"] = ( self._client.default_project_id ) if self.ConfigurationMetaNames.FEDERATED_LEARNING in meta_props: training_configuration_metadata["federated_learning"] = meta_props[ self.ConfigurationMetaNames.FEDERATED_LEARNING ] if _is_fine_tuning: train_endpoint = ( self._client.service_instance._href_definitions.get_fine_tunings_href() ) else: train_endpoint = ( self._client.service_instance._href_definitions.get_trainings_href() ) params = self._client._params() if "space_id" in params.keys(): params.pop("space_id") if "project_id" in params.keys(): params.pop("project_id") if self._client.ICP_PLATFORM_SPACES: if "userfs" in params.keys(): params.pop("userfs") response_train_post = requests.post( train_endpoint, json=training_configuration_metadata, params=params, headers=self._client._get_headers(), ) run_details = self._handle_response(201, "training", response_train_post) trained_model_id = self.get_id(run_details) if asynchronous is True: return run_details else: print_text_header_h1("Running '{}'".format(trained_model_id)) status = self.get_status(trained_model_id, _is_fine_tuning=_is_fine_tuning) state = status["state"] with StatusLogger(state) as status_logger: while state not in ["error", "completed", "canceled", "failed"]: time.sleep(5) status = self.get_status( trained_model_id, _is_fine_tuning=_is_fine_tuning ) state = status["state"] status_logger.log_state(state) if "completed" in state: print( "\nTraining of '{}' finished successfully.".format( str(trained_model_id) ) ) else: print( "\nTraining of '{}' failed with status: '{}'.".format( trained_model_id, str(status) ) ) self._logger.debug("Response({}): {}".format(state, run_details)) return self.get_details( trained_model_id, _internal=True, _is_fine_tuning=_is_fine_tuning )
[docs] def list( self, limit: int | None = None, asynchronous: bool = False, get_all: bool = False, ) -> DataFrame | Iterator | ListType: """List stored trainings in a table format. If limit is set to None, only the first 50 records are shown. :param limit: limit number of fetched records :type limit: int, optional :param asynchronous: if `True`, it will work as a generator :type asynchronous: bool, optional :param get_all: if `True`, it will get all entries in 'limited' chunks :type get_all: bool, optional :return: pandas.DataFrame with listed experiments :rtype: pandas.DataFrame **Examples** .. code-block:: python client.training.list() training_runs_df = client.training.list(limit=100) training_runs_df = client.training.list(limit=100, get_all=True) training_runs_df = [] for entry in client.training.list(limit=100, asynchronous=True, get_all=True): training_runs_df.extend(entry) """ # For CP4D, check if either spce or project ID is set self._client._check_if_either_is_set() def preprocess_details(details: dict) -> DataFrame | ListType: resources = details["resources"] values = [ ( m["metadata"].get("id", m["metadata"].get("guid")), m["entity"]["status"]["state"], m["metadata"]["created_at"], ) for m in resources ] return self._list( values, ["ID (training)", "STATE", "CREATED"], limit=None, default_limit=100000, sort_by=None, ) if asynchronous: return ( preprocess_details(details) for details in self.get_details( limit=limit, asynchronous=asynchronous, get_all=get_all, _internal=True, ) ) else: details = self.get_details(limit=limit, get_all=get_all, _internal=True) table = preprocess_details(details) return table
[docs] def list_intermediate_models( self, training_id: str | None = None, **kwargs: Any ) -> None: """Print the intermediate_models in a table format. :param training_id: ID of the training :type training_id: str .. note:: This method is not supported for IBM Cloud Pak® for Data. **Example:** .. code-block:: python client.training.list_intermediate_models() """ training_id = _get_id_from_deprecated_uid( kwargs, training_id, "training", can_be_none=False ) # For CP4D, check if either spce or project ID is set if self._client.ICP_PLATFORM_SPACES: raise WMLClientError( "This method is not supported for IBM Cloud Pak® for Data. " ) self._client._check_if_either_is_set() details = self.get_details(training_id, _internal=True) # if status is completed then only lists global_output else display message saying "state value" training_state = details["entity"]["status"]["state"] if training_state == "completed": if ( "metrics" in details["entity"]["status"] and details["entity"]["status"].get("metrics") is not None ): metrics_list = details["entity"]["status"]["metrics"] new_list = [] for ml in metrics_list: if "context" in ml and "intermediate_model" in ml["context"]: name = ml["context"]["intermediate_model"].get("name", "") if "location" in ml["context"]["intermediate_model"]: path = ml["context"]["intermediate_model"]["location"].get( "model", "" ) else: path = "" else: name = "" path = "" accuracy = ml["ml_metrics"].get("training_accuracy", "") F1Micro = round(ml["ml_metrics"].get("training_f1_micro", 0), 2) F1Macro = round(ml["ml_metrics"].get("training_f1_macro", 0), 2) F1Weighted = round( ml["ml_metrics"].get("training_f1_weighted", 0), 2 ) logLoss = round(ml["ml_metrics"].get("training_neg_log_loss", 0), 2) PrecisionMicro = round( ml["ml_metrics"].get("training_precision_micro", 0), 2 ) PrecisionWeighted = round( ml["ml_metrics"].get("training_precision_weighted", 0), 2 ) PrecisionMacro = round( ml["ml_metrics"].get("training_precision_macro", 0), 2 ) RecallMacro = round( ml["ml_metrics"].get("training_recall_macro", 0), 2 ) RecallMicro = round( ml["ml_metrics"].get("training_recall_micro", 0), 2 ) RecallWeighted = round( ml["ml_metrics"].get("training_recall_weighted", 0), 2 ) createdAt = details["metadata"]["created_at"] new_list.append( [ name, path, accuracy, F1Micro, F1Macro, F1Weighted, logLoss, PrecisionMicro, PrecisionMacro, PrecisionWeighted, RecallMicro, RecallMacro, RecallWeighted, createdAt, ] ) new_list.append([]) from tabulate import tabulate header = [ "NAME", "PATH", "Accuracy", "F1Micro", "F1Macro", "F1Weighted", "LogLoss", "PrecisionMicro", "PrecisionMacro", "PrecisionWeighted", "RecallMicro", "RecallMacro", "RecallWeighted", "CreatedAt", ] table = tabulate([header] + new_list) print(table) else: print( " There is no intermediate model metrics are available for this training id. " ) else: self._logger.debug("state is not completed")
[docs] def cancel( self, training_id: str | None = None, hard_delete: bool = False, **kwargs: Any, ) -> Literal["SUCCESS"]: """Cancel a training that is currently running. This method can delete metadata details of a completed or canceled training run when `hard_delete` parameter is set to `True`. :param training_id: ID of the training :type training_id: str :param hard_delete: specify `True` or `False`: * `True` - to delete the completed or canceled training run * `False` - to cancel the currently running training run :type hard_delete: bool, optional :return: status "SUCCESS" if cancelation is successful :rtype: Literal["SUCCESS"] **Example:** .. code-block:: python client.training.cancel(training_id) """ training_id = _get_id_from_deprecated_uid( kwargs, training_id, "training", can_be_none=False ) _is_fine_tuning = kwargs.get("_is_fine_tuning", False) # For CP4D, check if either spce or project ID is set self._client._check_if_either_is_set() Training._validate_type(training_id, "training_id", str, True) params = self._client._params() if hard_delete is True: params.update({"hard_delete": "true"}) if _is_fine_tuning: train_endpoint = ( self._client.service_instance._href_definitions.get_fine_tuning_href( training_id ) ) else: train_endpoint = ( self._client.service_instance._href_definitions.get_training_href( training_id ) ) response_delete = requests.delete( train_endpoint, headers=self._client._get_headers(), params=params, ) if ( response_delete.status_code == 400 and response_delete.text is not None and "Job already completed with state" in response_delete.text ): print( "Job is not running currently. Please use 'hard_delete=True' parameter to force delete" " completed or canceled training runs." ) return "SUCCESS" else: return self._handle_response( 204, "trained model deletion", response_delete, False )
def _COS_logs(self, run_id: str, on_start: Callable = lambda: {}) -> None: on_start() run_details = self.get_details(run_id, _internal=True) if ( "connection" in run_details["entity"]["results_reference"] and run_details["entity"]["results_reference"].get("connection") is not None ): endpoint_url = run_details["entity"]["results_reference"]["connection"][ "endpoint_url" ] aws_access_key = run_details["entity"]["results_reference"]["connection"][ "access_key_id" ] aws_secret = run_details["entity"]["results_reference"]["connection"][ "secret_access_key" ] bucket = run_details["entity"]["results_reference"]["location"]["bucket"] if bucket == "": bucket = run_details["entity"]["results_reference"]["target"]["bucket"] import ibm_boto3 client_cos = ibm_boto3.client( service_name="s3", aws_access_key_id=aws_access_key, aws_secret_access_key=aws_secret, endpoint_url=endpoint_url, ) try: if self._client.CLOUD_PLATFORM_SPACES: logs = ( run_details["entity"] .get("results_reference") .get("location") .get("logs") ) if logs is None: print( " There is no logs details for this Training run, hence no logs." ) return key = logs + "/learner-1/training-log.txt" else: try: key = ( "data/" + run_details["metadata"].get( "id", run_details["metadata"].get("guid") ) + "/pipeline-model.json" ) obj = client_cos.get_object(Bucket=bucket, Key=key) pipeline_model = json.loads( (obj["Body"].read().decode("utf-8")) ) except ibm_boto3.exceptions.ibm_botocore.client.ClientError as ex: if ex.response["Error"]["Code"] == "NoSuchKey": print( " Error - There is no training logs are found for the given training run id" ) return else: print(ex) return if pipeline_model is not None: key = ( pipeline_model["pipelines"][0]["nodes"][0]["parameters"][ "model_id" ] + "/learner-1/training-log.txt" ) else: print( " Error - Cannot find the any logs for the given training run id" ) obj = client_cos.get_object(Bucket=bucket, Key=key) print(obj["Body"].read().decode("utf-8")) except ibm_boto3.exceptions.ibm_botocore.client.ClientError as ex: if ex.response["Error"]["Code"] == "NoSuchKey": print("ERROR - Cannot find training-log.txt in the bucket") else: print(ex) print("ERROR - Cannot get the training run log in the bucket") else: print( " There is no connection details for this Training run, hence no logs." ) def _COS_metrics(self, run_id: str, on_start: Callable = lambda: {}) -> None: on_start() run_details = self.get_details(run_id, _internal=True) endpoint_url = run_details["entity"]["results_reference"]["connection"][ "endpoint_url" ] aws_access_key = run_details["entity"]["results_reference"]["connection"][ "access_key_id" ] aws_secret = run_details["entity"]["results_reference"]["connection"][ "secret_access_key" ] bucket = run_details["entity"]["results_reference"]["location"]["bucket"] if bucket == "": bucket = run_details["entity"]["results_reference"]["target"]["bucket"] import ibm_boto3 client_cos = ibm_boto3.client( service_name="s3", aws_access_key_id=aws_access_key, aws_secret_access_key=aws_secret, endpoint_url=endpoint_url, ) try: if self._client.CLOUD_PLATFORM_SPACES: logs = ( run_details["entity"] .get("results_reference") .get("location") .get("logs") ) if logs is None: print( " Metric log location details for this Training run is not available." ) return key = logs + "/learner-1/evaluation-metrics.txt" else: try: key = ( run_details["metadata"].get( "id", run_details["metadata"].get("guid") ) + "/pipeline-model.json" ) obj = client_cos.get_object(Bucket=bucket, Key=key) pipeline_model = json.loads((obj["Body"].read().decode("utf-8"))) except ibm_boto3.exceptions.ibm_botocore.client.ClientError as ex: if ex.response["Error"]["Code"] == "NoSuchKey": print( "ERROR - Cannot find pipeline_model.json in the bucket for training id " + run_id ) print( "There is no training logs are found for the given training run id" ) return else: print(ex) return key = ( pipeline_model["pipelines"][0]["nodes"][0]["parameters"].get[ "model_id" ] + "/learner-1/evaluation-metrics.txt" ) obj = client_cos.get_object(Bucket=bucket, Key=key) print(obj["Body"].read().decode("utf-8")) except ibm_boto3.exceptions.ibm_botocore.client.ClientError as ex: if ex.response["Error"]["Code"] == "NoSuchKey": print("ERROR - Cannot find evaluation-metrics.txt in the bucket") else: print(ex) print( "ERROR - Cannot get the location of evaluation-metrics.txt details in the bucket" )
[docs] def monitor_logs(self, training_id: str | None = None, **kwargs: Any) -> None: """Print the logs of a training created. :param training_id: training ID :type training_id: str .. note:: This method is not supported for IBM Cloud Pak® for Data. **Example:** .. code-block:: python client.training.monitor_logs(training_id) """ training_id = _get_id_from_deprecated_uid( kwargs, training_id, "training", can_be_none=False ) if self._client.ICP_PLATFORM_SPACES: raise WMLClientError( "Metrics logs are not supported. This method is not supported for IBM Cloud Pak® for Data." ) Training._validate_type(training_id, "training_id", str, True) self._simple_monitor_logs( training_id, # type: ignore lambda: print_text_header_h1( "Log monitor started for training run: " + str(training_id) ), ) print_text_header_h2("Log monitor done.")
def _simple_monitor_logs( self, training_id: str, on_start: Callable = lambda: {} ) -> None: try: run_details = self.get_details(training_id, _internal=True) except ApiRequestFailure as ex: if "404" in str(ex.args[1]): print( "Could not find the training run details for the given training run id." ) return else: raise ex status = run_details["entity"]["status"]["state"] if ( status == "completed" or status == "error" or status == "failed" or status == "canceled" ): self._COS_logs( training_id, lambda: print_text_header_h1( "Log monitor started for training run: " + str(training_id) ), ) else: if self._client.CLOUD_PLATFORM_SPACES: ws_param = self._client._params() if "project_id" in ws_param.keys(): proj_id = ws_param.get("project_id") monitor_endpoint = ( self._credentials.url.replace("https", "wss") + "/ml/v4/trainings/" + training_id + "?project_id=" + proj_id ) else: space_id = ws_param.get("space_id") monitor_endpoint = ( self._credentials.url.replace("https", "wss") + "/ml/v4/trainings/" + training_id + "?space_id=" + space_id ) else: monitor_endpoint = ( self._credentials.url.replace("https", "wss") + "/v4/trainings/" + training_id ) websocket = WebSocket(monitor_endpoint) try: websocket.add_header( bytes("Authorization", "utf-8"), bytes( "Bearer " + self._client.service_instance._get_token(), "utf-8" ), ) except: websocket.add_header( bytes("Authorization", "utf-8"), bytes("bearer " + self._client.service_instance._get_token()), ) on_start() for event in websocket: if event.name == "text": text = json.loads(event.text) entity = text["entity"] if "status" in entity: if "message" in entity["status"]: message = entity["status"]["message"] if len(message) > 0: print(message) websocket.close()
[docs] def monitor_metrics(self, training_id: str | None = None, **kwargs: Any) -> None: """Print the metrics of a created training. :param training_id: ID of the training :type training_id: str .. note:: This method is not supported for IBM Cloud Pak® for Data. **Example:** .. code-block:: python client.training.monitor_metrics(training_id) """ training_id = _get_id_from_deprecated_uid( kwargs, training_id, "training", can_be_none=False ) if self._client.ICP_PLATFORM_SPACES: raise WMLClientError( "Metrics monitoring is not supported for IBM Cloud Pak® for Data" ) Training._validate_type(training_id, "training_id", str, True) try: run_details = self.get_details(training_id, _internal=True) except ApiRequestFailure as ex: if "404" in str(ex.args[1]): print( "Could not find the training run details for the given training run id. " ) return else: raise ex status = run_details["entity"]["status"]["state"] if ( status == "completed" or status == "error" or status == "failed" or status == "canceled" ): self._COS_metrics( training_id, # type: ignore lambda: print_text_header_h1( "Log monitor started for training run: " + str(training_id) ), ) else: if self._client.CLOUD_PLATFORM_SPACES: ws_param = self._client._params() if "project_id" in ws_param.keys(): proj_id = ws_param.get("project_id") monitor_endpoint = ( self._credentials.url.replace("https", "wss") + "/ml/v4/trainings/" + training_id + "?project_id=" + proj_id ) else: space_id = ws_param.get("space_id") monitor_endpoint = ( self._credentials.url.replace("https", "wss") + "/ml/v4/trainings/" + training_id + "?space_id=" + space_id ) else: monitor_endpoint = ( self._credentials.url.replace("https", "wss") + "/v4/trainings/" + training_id ) websocket = WebSocket(monitor_endpoint) try: websocket.add_header( bytes("Authorization", "utf-8"), bytes( "Bearer " + self._client.service_instance._get_token(), "utf-8" ), ) except: websocket.add_header( bytes("Authorization", "utf-8"), bytes("bearer " + self._client.service_instance._get_token()), ) print_text_header_h1( "Metric monitor started for training run: " + str(training_id) ) for event in websocket: if event.name == "text": text = json.loads(event.text) entity = text["entity"] if "status" in entity: status = entity["status"] if "metrics" in status: metrics = status["metrics"] if len(metrics) > 0: metric = metrics[0] print(metric) websocket.close() print_text_header_h2("Metric monitor done.")
[docs] def get_metrics( self, training_id: str | None = None, **kwargs: Any ) -> ListType[dict]: """Get metrics of a training run. :param training_id: ID of the training :type training_id: str :return: metrics of the training run :rtype: list of dict **Example:** .. code-block:: python training_status = client.training.get_metrics(training_id) """ training_id = _get_id_from_deprecated_uid( kwargs, training_id, "training", can_be_none=False ) Training._validate_type(training_id, "training_id", str, True) status = self.get_status(training_id) if "metrics" in status: return status["metrics"] else: details = self.get_details(training_id, _internal=True) if "metrics" in details: return details["metrics"] else: raise WMLClientError( "No metrics details are available for the given training_id" )