VectorIndexes¶
- class ibm_watsonx_ai.foundation_models.utils.VectorIndexes(api_client)[source]¶
Bases:
WMLResource
Initiate the Vector Indexes class.
- Parameters:
api_client (APIClient) – instance of APIClient with default project_id set
Example:
vector_indexes = VectorIndexes(api_client=api_client)
- create(name, description=None, store=None, settings=None, tags=None, sample_questions=None, **kwargs)[source]¶
Creates a new Vector Index Asset.
- Parameters:
name (str) – name for vector index asset
description (str | None) – optional description for the vector index asset, defaults to None
store (dict | None, optional) – store parameters, defaults to None
settings (dict | None, optional) – settings of vector index, defaults to None
tags (list[str] | None, optional) – tags attached to the asset, defaults to None
sample_questions (list[str] | None, optional) – sample asked questions, defaults to None
data_assets (list[str] | None, optional) – IDs of the associated data assets used in the vector index, defaults to None
build (dict | None, optional) – the associated build to process the data for external vector stores, defaults to None
status (str | None, optional) – the status of the vector index, defaults to None
- Returns:
metadata of the created Vector Index Asset
- Return type:
dict
Example:
params = dict( name="test_sdk_vector_index", description="Description", settings={ "embedding_model_id": "<model_id>", "top_k": 1, "schema_fields": {"text": "text"}, }, store={ "type": "watsonx.data", "connection_id": "<connection_id>", "index": "<index_name>", "new_index": False, "database": "default", }, tags=["test_tag"], sample_questions=["Sample question"], status="ready", ) vector_index_details = vector_indexes.create(**params)
- delete(index_id)[source]¶
Delete a vector index with the given id.
- Parameters:
index_id (str) – Vector Index id
- Returns:
“SUCCESS” if delete successfully
- Return type:
str
Example:
vector_indexes.delete(index_id)
- get_details(index_id)[source]¶
Get details of Vector Index Asset with given index_id.
- Parameters:
index_id (str) – Vector Index id
- Returns:
details of Vector Index Asset with given index_id
- Return type:
dict
Example:
vector_indexes.get_details(index_id)
- list(*, limit=None)[source]¶
List all available Vector Index Assets in the DataFrame format.
- Parameters:
limit (int, optional) – limit number of fetched records, defaults to None.
- Returns:
DataFrame of fundamental properties of available Vector Index Assets.
- Return type:
pandas.core.frame.DataFrame
Example:
vector_indexes.list(limit=5) # list of 5 recently created vector index assets
- update(index_id, name=None, description=None, store=None, settings=None, tags=None, sample_questions=None, **kwargs)[source]¶
Update a Vector Index Asset with the given id.
- Parameters:
index_id (str) – Vector Index ids
name (str | None) – name for vector index asset, defaults to None
description (str | None) – optional description for the vector index asset, defaults to None
store (dict | None, optional) – store parameters, defaults to None
settings (dict | None, optional) – settings of vector index, defaults to None
tags (list[str] | None, optional) – tags attached to the asset, defaults to None
sample_questions (list[str] | None, optional) – sample asked questions, defaults to None
data_assets (list[str] | None, optional) – IDs of the associated data assets used in the vector index, defaults to None
build (dict | None, optional) – the associated build to process the data for external vector stores, defaults to None
status (str | None, optional) – the status of the vector index, defaults to None
- Returns:
metadata of the created Vector Index Asset
- Return type:
dict
Example:
vector_indexes.update(index_id, name="new_name", description="new_description")